. AD-AL63 936 AUTONONOUS VEHICLE NISSION PLWIIG US!IG lll 173
(RRTIFICIRL INTELLIGENCE) TE (U) BIR FORCE INST OF
RIGHT-PATTERSON RFB 0
UNCLASSIFIED S E STOCKBRIDGE DEC 85 ﬂFlT/GE/ENG/BSD 45 "Fr6 624

i W

L we W s e e el

R E

RN

A LR N ST

s L S

i

7,

.

SR IR

it

ey

SN0 Codh

-

-

RNk S

W wrarvim v PR NONCRPPINN 1™ T LA i 49T e A AN i et A bl o e UAAPAS Pt o S

Tl

SO NS LI o

-.-.qcao.

A,

k7

&

g o

Y

AL N b itz . o

EFEE
S EEE

dda Numnuu.m

14

ez

i

6, ¥ .ah\.,

MICROCOPY RESOLUTION TEST CHART

Sttt
~~.-Q~n

L ey [y

NATIONAL BUREAU OF STANDARDS-1963-A

RN A g

TC FILE COPY

AD-A163 956

AUTONOMOUS VEHICLE MISSION PLANNING
USING AI TECHNIQUES
THESIS

Samuel E. Stockbridge
Captain, USAF

AFIT/GE/ENG/85D-45

DISTRIBUTION STATEMENT A

Approved for public releqse
Distribution Unlimited

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY ‘»4

ey -
e Ll

Wright-Patterson Air Force Base, Ohio

A o S ki BE - K ALY L S NS eb, BE e

"
R AFIT/GE/ENG/85D=45
¥ ="

AUTONOMOUS VEHICLE MISSION PLANNING
o USING AI TECHNIQUES

THESIS

o Samuel E. Stockbridge i%:
- Captain, USAF]

.
’
v

AFIT/GE/ENG/85D-45

1

Lt \.'n-'

A AN

S .
i

)
I e II 'O : ’
. P . o
. . DA I AL
- Attt
. .

-
v
aletele nlata

'

. NG
¢
'n't .'t
'

.

7/

»
‘ .

"' o e
.

. .c . '. [N

o« P PPN

. -
.
a0

*
.

o Approved for public release; distribution unlimited -

ele's's

4

l:l s

PNV

LR
ol e SC R RO S SR,

[

1Y

AFIT/GE/ENG/85D=45

AUTONOMOUS VEHICLE MISSION PLANNING USING AI TECHNIQUES

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
In Partial Fulfillment of the
Requirements for the Degree of

Master of Science in Electrical Engineering

Accesion For

DTIC TAB
Unanno's. ced
Justitication

\

NTIS CRA&I &
a

&

Samuel E. Stockbridge, B.S. By

Distribution |
Captain, USAF

........... -4

Avaii a.djor
Dist Special

]|

December 1985

Availability Codles

r————

Approved for public release; distribution unlimited

A S~ A il S S e § F PN TR R AP I Tt g R A A AP R O

[

Preface

The purpose of this thesis was to investigate the critical
components of an autonomous vehicle”s "intelligence®. This
thesis gives particular emphasis to the desirable attributes of
an operating system and mission planner, taking concepts from the
field of cognitive psychology and natural language text under-
standing and incorporating them into the vehicle”s planning
architecture.

The argument given here {8 that in order for an autonomous
vehicle to be truly intelligent, and hence truly automomous, it
must have the ability to understand its environment as well as

Qé. the ability to plan in i{t. Therefore, a blackboard control
architecture was adopted for the operating system in order to
provide flexibility. The mission planner architecture, on the
other hand, was based on a production system using meta-
knowledge, that is, knowledge about the planning process, in
order to construct plans. The planner is the plan generator,
while the operating system is a plan projector and goal detector.

Although the blackboard control architecture is well known,
I feel that the particular operating system architecture combined
with the planner architecture implemented here provides a more
powerful and flexible mechanism for overall control of the auto-

nomous vehicle.

Samuel E, Stockbridge

b
: _‘.'__\
-l ‘:-'.'
’ Table of Contents
N
.5 Page
Preface . * o L] L] [] L] L] L] L] * L] L] L] L] . L] . L] L 2 L] [] L] 11
& List Of FIiBUFeS8 . +: « ¢ o o 2 o o o o o s o o o o o & v
‘ Abs tract * L] L] L] L] ® L 2 L] L] L] ® . L] L L] . * * L] L] [] L] vi
I. Introduction . . o ¢ o« o o o ¢ o ¢ o o o o o = 1
Background L] . L] * ® . L] . L] » L[] L[] * [] ® L] 1
‘._ Problem - . L] L} * . [} L] L] L] L] L] L] L] L] . [L[] 2
-:: Scope L] L L] L] L] L . . L] . L] L d o Ll L] ® . [] L] 6
¥ Ass umptions . L] L] L] * L] L] . . L] L] L] L] - L] L] 6
| Summary of Current Knowledge 7
':‘ App roach L ® . [L] L] L] L] L] L] L] L] L] L] L] L 2 . 11
‘ Equipment Requirements . . . « ¢ « o ¢ o 12
; II. Autonomous Vehicle Operating System ., .. « + . = 13

Q! Introduction . & o o o o o s o & o o s o 13
n Autonomous Vehicle Model . . « « ¢« o ¢ o+ & 16
.- Intelligent Operating System Tasks 18
III L Planning L d L] L] * L] - L] L] L] L] * L] L] . L] . . L] L] 22

Introduction ,

. Hierarchical Planning « « ¢ « « o « o o o o 23
.~ Nonhierarchial Planning . . « + « « &« o o 28
Metaplanning + &+ + o & o ¢ o 5 o . 30
System Organization . « . « ¢ ¢ s ¢ ¢ o o 34

.
.
.
.
.
.
w
~

Iv. Operating System Design . . « .« . &

Introduction

The ROSS Language . . « o ¢ o o o s o o o 39
The Program Structure . . « o o o o o o o 42
The world Hodel L] L] . L] L] * L] [] L] . * L] L] L] 55

= v. Planning System Design . . . « ¢« & ¢ ¢ ¢ o o & 59 ﬂ}.

Introduction

Conceptual Dependency . . + o o s o o o o 61 g
H:lcto-PAH ¢ 8 e e €6 & & & 8 ° 5 2 s e e » 65 E- ~
Program Structure . . o o s o o s s o o o 72 ~=

i1 P

VI. Integration and Testing

Introduction . .

Recommendations

[. [] .] . [

Integration &
Testing s s e . e
VII. Summary, Conclusions, and
Summary and Conclusions
Recommendations . . .
Appendix: Test Run Transcript
Bibliography c o e s o s s o
V1 ta . . L] L] L] . * L] L] [] L

81
81
82
82
113

113
116

119
198

200

r

A ARAA 2o L

e
M

AT
v n?

£

.
A :v’ ‘.,_1

2,

(’r

.';.‘-"

PR 3
@ o

L

BT uid SUSNAI
N e

o
»”

7
’

",‘,'/ s ™

2 A
s 4
»

2 A,

el
e

X

PRy
L

.‘rn\ ..

l'd

NN L AANS
;

Figure Page o,

ety D
[
[
o«
(o g
I
=y
[V
=
L]
®
]

.
«
-

Plan for Days Activities . . . « ¢ o ¢ o ¢ o o 24 —

-
L]

. 2. Non-linear Planning o s ¢ ¢ o o o s o o 27 .
. 3. Meta-Planning Process . . . « o ¢ o o o o o o o 31 g&;
i 4, Program Architectlure . . + ¢ o o o o o« » s « o @ 43 g?:
5. Communication Among Main Processor Actors . . . 43 ’i
E- 6. Communication Among Sensor Actors . « « « o o & 50 Z;ﬁ
- =

ij 7. Blackboard Partitions . . o ¢ o o o o o o & o 52 -

g 8. World Model of Autonomous
gi Vehicle”s Environment . . o« « o« s o o o o o o o 56
Base to Workbench Route . . . ¢ ¢ &+ ¢ o o o o o 56
Truth Malntenance . ¢« ¢ ¢ ¢ o o o o o o o o s 74 -
Autonomous Vehicle”s Environment . . . ¢ + o o = 84 fgi
3

.....................
........

: AL
) y
: &
N Ty
T >
T % AFIT/GE/ENG/85D-45 ol
; ’
N ‘
: Y
& 3
Y y t
A Abstract e,
i t,
N This study investigates a software architecture for autono- k?;
i mous vehicle control, The autonomous vehicle”s planning ability }"”
. i..
- is divided into operating system functions and mission planning N
‘ system functions. The blackboard control architecture is adopted flﬁ
j for the operating system design with implementation using the }f
ROSS programming language. g
The planning system incorporates elements of a planner and ii?
i (é- understander by declaratively encoding meta~knowledge, or e
knowledge about the planning process., By separating the fﬁ
knowledge about how to plan from the specific domain knowledge, ji?
i an understander can use this knowledge about how plans are con- L
structed, in combination with the specific domain knowledge, in Eif
;: the understanding process., Likewise, a planner can use this same jgi
% knowledge in the planning process. Thus, a great deal of flexi- e
bility is attained by dividing the knowledge base into meta-rules
g and domain specific rules. i?f
i The planning system constructs an agenda of scripts which -
,: directs the control flow in the operating system. The operating .
= system is given the additional duties of goal detector and plan lﬁ;
projector in order to simulate the plan steps proposed by the fy~
- ﬂ%& planner. Hence, the operating system detects any errors in the fﬁf
. Sl
- . éﬁj
. v :
;)
e e e e

{
\

plan and terms these errors in the form of goals the planner can

e understand.
The implementation demonstrates the benefits of using meta-
planning concepts combined with a blackboard control architecture
to provide an autonomous vehicle with a more flexible and powver-

ful planning capability.

S
- s
% %
r o
:_ “ ._-_'_J
>]
= - -
.:‘\ -
[~
o
[->

vii

SR A SN N N N AL AP S S A e M T L AR E N A Lt Ca P L SR SR b CACATAEA 00 b £

K4
ol

WAPAL TN

"« Te e
PR

,
' ‘-.
ot

P

3
PP

LA A A S N 4 v v
W D -‘ .
PR ot I

<N v s P

1 .fn,

e

(o

AUTONOMOUS VEHICLE MISSION PLANNING USING AI TECHNIQUES

I. Introduction

Background

The ability to maintain and service aircraft in a Nuclear-
Biological~Chemical (NBC) contaminated environment has long been
of interest to the Air Force. Research efforts by the Air Force
have been concentrated in reducing the risk to ground crews while
still maintaining the vital function of aircraft maintenance.

One approach investigated by the Air Force involves the use of an
autonomous vehicle (such as a robot) to perform the tasks of
aircraft maintenance (3; 12). To accomplish the job, the autono-
mous vehicle must have the ability to:

1. Plan actions and prioritize assigned tasks

2. Plan a path to the appropriate aircraft

3. Handle unforeseen problems :{i
4., Accomplish the required maintenance

S. Return to the work station

A previous AFIT thesis effort focused on the problem of

¢
planning an optimum path and navigating the autonomous vehicle to Tiﬁ
its destination (10). The effort resulted in a software algo- gé.

SN
rithm that can determine the shortest path to a goal around F?{

stationary objects in an aircraft hangar. The algorithm requires &j:

v TN RO s Y R R AR TN T T YT YN O TNTW LN VTR

an accurate representation of the vehicle’s environment along
with predetermined information such as the current location of
the vehicle and the destination. Given this information, the
algorithm can simulate the movements of the vehicle through an
aircraft hangar; however, it cannot avoid dynamic objects (ob-
jects in motion) that may cross its path., Nevertheless, the

algorithm provides an excellent foundation for further research.

Problem
The ability to plan actions and prioritize tasks is crucial
to the development of an autonomous vehicle capable of operating
with minimal human intervention. This research effort will con-
centrate on developing a software algorithm to perform the
mission planning function while using available on-board
(é‘ resources effectively.

- There are many tasks that a human ground crewman performs
while striving to accomplish his ultimate goal. For example, {f
his ultimate goal is to repair a jet engine, he must first have
the necessary tools with him. If he does not have the tools, he
must construct a plan to obtain them. Once he has obtained the
tools, he must next construct a plan to get to the appropriate
aircraft so that he can accomplish his ultimate goal. Humans do
not consciously construct plans for these tasks because they have

the ability to learn and to use their prior experiences in

similar si{ituations. An autonomous vehicle, on the other hand,

must have all this detailed knowledge available to it. It must

know what the preconditions are for accomplishing tasks, and it P
must perform them in the proper sequence. In the previous }ﬁﬁ
Ay

RS

._‘ \1

R

) 3

”....-._-).-.....~~....-.l-._'\..\ ‘............~.'-...',.‘_'~ R L ot .- S I A R St e e,
. . - et et et - 2T ettt L R S S - B . T e N e e e e e e
RPN S I L N S I s D Iy R IR TR P IR P PRI T L - ORI RPN SO S SANNRAR L o PN AP R P

-

P

L
5
o
N
[
d
“
.

example, if an autonomous vehicle was told to repair the engine
on a jet, 1t must know that the preconditions for accomplishing
this task are to be at the jet, and to have the necessary tools,
However, simply knowing these preconditions is not enough; it
must also know that the tools must be obtained first, Having
this knowledge available to the vehicle is essential to the
mission planning capability of the autonomous vehicle.

An autonomous vehicle capable of operating in its environ-
ment independent from human intervention must have the ability to
use its resources effectively. A human has the ability to pro-
cess a myriad of information in parallel and utilize this infor-
mation in performing everyday activities. The actual processing
of this information may be done in different parts of the brainj;
however, it is made available to other parts if needed. Like-
wise, an autonomous vehicle must process a host of Information
from various sources and use this information to perform its
prescribed mission, The type of information the autonomous
vehicle might process would include: sensor data, route planning
data, mission planning data, as well as information on the
vehicle”s fuel status and maintenance requirements. Assimilating
and controlling the flow of this information is the job of the
operating system, and it is crucial to the mission of the autono-
mous vehicle.

In a multiprocessor autonomous vehicle, direct communication
between processors may not be feasible due to design constraiants
on avallable area for bus paths. Furthermore, the complexity of
direct processor to processor communication may make future up-

grade of the system extremely difficult, Instead, communication

HCRACIACNR SRR SN A i iy e St R Sl ‘A a i M e Gty S 5 LR TR, Tehe Ay Sy SEh RS S T e T N

W
e v .

LI A
v 1t

»

i

vy
. l.
1l

.':J

L

-’Vl'!b

-
.

B PR BN
LI P

3 - . N . P o » ——
A LR A < e Ton MmO L R L ARG S S I S ps Sn2i . - Lo W W = o 2 * L9 TE

3 £
i
:
=S between processors can be accomplished through a shared common g&;
. o memory or blackboard. By using the blackboard approach, system ;?f
»
o information can be made available to any processor needing {t. ;!%
és The difficuity with this approach, however, is the requirement to F}i
fi control accesses to the blackboard. One purpose of this project .qm
- 1s to simulate the processing environment present in an autono-
:i mous vehicle in an effort to identify a suitable software archi-
- tecture that would allow an autonomous vehicle to perform its
& mission effectively.
: Unlike an operating system for a regular computer, the v
b, operating system in an autonomous vehicle must be able to handle ;it
f unforeseen situations. For example, if a certain plan is being
? carried out that makes use of the vehicle”s sensory capability
(! (such as sonars) on the left side of its body, and all sensors fﬁi
fail on the left side, then the operating system may construct a :iﬁ
; plan to use other available sensors, or to use the sensors on the ii‘
N right side of its body. To achieve this, the operating system \gi
must be able to infer goals., If in the example above, the _:j
vehicle”s available fuel became critically low, it would be ;E:
'i desirable to give maximum attention to planning a route to a t;i
- refueling station. Assuming the vehicle were stationary at the 'f?
time, 1t would be unwise to give equal bus time to the other :;;
processors. Instead, effort should go into correcting the situa- ;“(
;; tion and perhaps even shutting down unnecessary processes. The i;f
ég detection of such a goal might be the job of an execution monitor j;*
; who constantly checks on the condition of the vehicle. If a low éxﬁ
; fuel state is detected, this information would be passed to a ;iﬁ
> 4 P
e e R e e

projector to determine if the vehicle”s current goal could be

achieved and still allow sufficient fuel to reach its refueling

station. If the current goal could not be achieved, it should be

abandoned and a new goal of refueling should be established. In

effect, the operating system”s flow of control has beemn altered;

new priorities have been established and previous policles the

system may have had, such as allowing equal bus time, are aban-

doned. To accomplish this, it will be necessary to integrate the

mission planning mechanism with the overall operating system

architecture to allow these types of goal inferences.

An independent but important functiom of the mission

planning problem is the path planning problem. Planning an

optimum route to a destination camn be accomplished if the path

planner has at its disposal an accurate representation of its

environment. However, while executing the planned route the

vehicle may encounter dynamic objects or objects that it had no

knowledge of. One strategy might be to simply stop and wait for

a moving object to cross the path; however, this strategy may not

‘s

work im all situations. The moving object may be on a collision

«

e, e 0
«

course with the autonomous vehicle, or it may halt directly in

s

i

-

the planned path and not move again. Allowances must be made for
these situations and the appropriate strategy must be chosen 1in

order to prevent damage to the vehicle. 1If the vehicle cannot

PR
PR S S S S P A

get around the object, then it may have to abandon its mission
goal and attempt to accomplish other goals, Strategies such as ﬁ%ﬂ
these must be made available to the autonomous vehicle so that it ﬁ?:
RN
can perform its mission effectively. Selecting and executing the ~—
SN
appropriate strategy will be a cooperative effort between the NG
“‘:\l:
:.:‘:1'
S ’\ .,.I
IS
T R R sy R N A S R TR

v v~

>

..

LR T Bt A A A

operating system and the mission planning mechanism.

Scope

This thesis effort will concentrate on developing an
operating system suitable to demonstrate the mission planning and
execution function of an autonomous vehicle. The effort will be
limited to identifying only high-level functions the operating
system must perform, such as handling accesses to a shared common
memory and calling on appropriate specialists.

A mission planner will be developed suitable to demonstrate
the interactions between the operating system and a planner
mechanism, Actual detailed plans will not be developed in an
effort to focus on the concepts involved.

Finally, concepts from a path planning program developed
in a previous thesis effort will be incorporated iato the overall
program in order to demonstrate the operating system and mission

planner”s capabilities.

Assumptions

This research effort assumes that the autonomous vehicle
will have basic sensory capability in its design. Sensory
mechanisms necessary to detect objects, orient the vehicle, and
compute distance travelled will be simulated in the software
algorithm. Furthermore, the autonomous vehicle will be modelled
as a multiprocessor system composed of four microprocessors.
Research work at AFIT in the area of autonomous vehicle design

supports this assumption (3; 12).

v vy,
)
+

o

e

o v

Py

.
[
a

o
(2

<

)
o
.

v':
e 2o

v -
]

* o
’

.'
X
4

N e

5

"y

<.
A

(LA

4, .y
.(:.' N
e

-

"
"7

Ny
F R}

..
o
el
.

.
- o

.
)

it

2P

<
<
<
o

Ly

"I

wy "

Summary of Current Knowledge

Researchers in the field of cognitive psychology have stu-
died how humans construct plans to accomplish errands. Their
research revealed certain techniques humans use in constructing
plans to accomplish a number of errands during a single day. In
an attempt to emulate human behavior in these situations, they
developed a computer program using the Lisp programming language.
The algorithm they developed could emulate the behavior of
several of the test subjects (8:2-3). 1In their model, the plan- .
ning process was composed of the independent and asynchronous

operation of many distinct specialists or knowledge sources.

Each specialist made tentative decisions for incorporation into
an overall plan. These decisions were then stored in a shared

common memory, or blackboard, for use by other specialists. The

blackboard was partitioned into different levels with each level

’

A

representing conceptually different categories of decisious. fi.

Some of the specialists were not restricted to accesing single

»
.
AN

levels of the blackboard. 1Instead, they could access other

levels and base their decisions on the decisions of other

.t 'n"'l'_'-"'n."»l 1
- 4 . ’ 1 ’ . ‘1 4

specialists, Hence, information could be shared and decisions

altered based on new information gained from interacting with

other specialists. This process was termed opportunistic plan- iﬁ%
ning and reflects the techniques humans use in constructing plans ;ﬁf
to accomplish everyday activities., @3:

The idea of cooperating specifalists was used in Reference Eﬁg
(6) to implement the operating system of an autonomous vehicle. $§

Their operating system consisted of cooperating expert modules

together with a high-level coordinator that invoked the L?f

AN A SWEAIT AL RO R A AN N S N e RO A A bR i i e g B Rt Sape pae Sedr it Duthushoge thek I e ek B2 Il s Sk 200 W 2te Jba Bie B p o)

appropriate expert module based on the current state of the
robot., Some of the tasks performed by the expert modules
included: error processing, mission planning, and path planning.
N In the area of planning, several types of blanners have been
developed for domains ranging from game playing to assembly tasks
(4). Of interest to this research effort are the planners that

E have been developed to carry out everyday human tasks. In

3 particular, Wilensky (15; 16) has studied the relationship
between planning and understanding in his research in the area of
natural language text understanding. In problem solving, a

planner is given a goal and must construct a plan to satisfy {it.

N In contrast, an understander might need to follow the plans of an

g actor and make inferences about the actor”s goals. Similarly, a

5 (E, robot may be given several tasks to perform, and it must con-

- — struct plans to accomplish these tasks. When to perform these

E tasks is a function of the robot”s ability to make inferences

; based upon conditions in its environment. Likewise, if more than

i one robot is present, it may be advantageous to infer what task .i

,5 the other robot is performing so consideration can be given to ;?E

: the changing environment. lfﬁ

.é Certain portions of the knowledge required to construct ;éE

E plans and to understand plans can be shared between a planner and E;g

X an understander (15:29-40)., This knowledge consists of knowledge ibﬁ
about the planning process itself and Wilensky termed it meta-]
planning knowledge. He organized this knowledge under four main :'
principles he termed meta-themes: Eéi

gf -ﬁi, 1. Don“t waste resources Eé&

: R

= b

2
F‘.’- \J
' 4 v
2. Achieve as many goals as possible fﬁ:
3. Maximize the value of goals achieved :ﬁﬂ
4. Avoid impossible goals L
: R
\ These themes reflect some of the basic underlying principles }QE
Y humans use to guide them in constructing plans. For example, the ‘.ﬂ
£,
meta-theme don“t waste resources may arise when a person 1is given :?m

many tasks to perform and only a 1imited amount of fuel in his %T‘
vehicle. The person would then try to plan an optimum course of
action to follow in accomplishing these tasks. If some unfore-
seen event occurs, such as a traffic jam, the person may realize
that he won“t be able to accomplish all the assigned tasks. haty
Therefore, he may use the second meta-theme, achieve as many ‘E:
goals as possible, in order to abandon certain tasks that he
(! éonsiders insignificant. These themes serve to guide the
. selection of goals, and hence, the appropriate plan. Wilensky
implemented his concepts in a story understanding ﬁrogram known 7%
as PAM. The concepts he developed would be useful in a mission f*.
planner in an autonomous vehicle since the ability to infer goals
and to re-plan actions if necessary is vital in a dynamic :Ei
environment such as an aircraft flight line. £
Associated with the mission planning function is route plan-
ning. A program was developed by Monaghan (10) that determines
the optimum path between points in a simulated aircraft hangar .

environment. The environment was modelled as a two~dimensional X

ORI S RO

representation of real world edges. A complex configuration R
space was derived from this world model and represented the free

b space that the autonomous vehicle could move through. Using the th

.....
.......

configuration space, point-to-point motion was then planned to
the destination. As mentioned earlier, however, all objects in
the environment were stationary; therefore, the robot always had
an accurate world model representation. Nevertheless, the
program provides the necessary function of route planning, and
unforeseen situations such as moving objects might best be
performed by the operating system itself.

Current work in the field of autonomous vehicle control
supports much of the approach taken here. However, differences
exist in the philosophies of representing knowledge.
Specifically, researchers at Hughes Laboratory have taken the
approach of representing the knowledge base in the form of a
production system (9). They categorize the knowledge in an
autonomous vehicle as being composed of special problem solvers,
scripts, and domain-specific production rules. The special pro-
blem solvers perform the path planning function mentioned
earlier. The scripts, on the other hand, are symbolic represen-
tations of stereotypical sequences of events, How to use these
scripts is encoded in the production system rules in the form of
IF-THEN statements. Therefore, all strategies on how to plan are
grouped together in the production system, unlike the approach
taken in metaplanning mentioned earlier. The approach they take
reduces the level of abstractions in the planning process to
basically two levels: find an appropriate production rule, then
use the scripts encoded in that rule. The approach taken, how-

ever, is a vast improvement over previous problem-solver based

systems in that this method is knowledge driven.

.
-

Approach

A The problem of autonomous vehicle planning and navigation is

broken down into three tasks:

Y, - ST AT] ISR

l. Operating system development

e

2. Mission planner development

2

3. Route planner development

Tyt i
..l ‘-41'

The operating system has the responsibility of controlling

-

e L
. e
o [

communications between the microprocessors in the vehicle and

invoking appropriate routines. Therefore, the operating system

provides coordination among specfalized routines, and as such,

ES will be developed first to provide the driving mechanism for the
mission and route planner, Specialized routines in the operating
system will be developed to provide necessary functions such as

(5 controlling accesses to memory, monitoring the execution of a

’ planned route, monitoring fuel status, and issuing movement
commands. Implied in this is the development of a blackboard to
provide the means for communication between processes. The par-
titioning of the blackboard will reflect the categories of
decisions made by the specialized routines. For example, an
execution monitor specialist might access the planned-route
partition, as well as the current~state partition in an effort to

determine i1f the vehicle is on course. The specialists will not

be restricted in their accesses to partitionms; however, direct

v
.
’o
Y

communication between specialists will be controlled by an

AN
Vetat

v v,
(]

overall scheduler specialist.

Once the operating system has been defined the mission

AR
R |

planner will then be developed. A version of Wilensky”s PAM

IR T R e

11

opet %

R PO SN S ORI SRR R
?:’.’(‘._:.’.:J:':P")‘.J A IS N

QR

TEEBY T

st - s B

.
",

* -

oW

1/ IERDINRS

CETe Wt
v Syt e

4, ¢, 8

o

Lo

program, known as Micro-PAM, will be expanded and modified to
handle the domain of the autonomous vehicle., Micro-PAM will be
modified to handle multiple tasks and the possible interactions
between these tasks. Furthermore, in an effort to increase 1its
efficiency, an indexing scheme willAbe added to the program in
order to reduce the search time through the rules in its
knowledge base.

Finally, a simple route planning program will be developed
in order to demonstrate the concept of planning in a dynamic
environment., Although the primary emphasis of this research
effort is on the interactions between the operating system and
mission planner, a mechanism for generating routes through the
environment is needed. Therefore, a simple world model will be
C¢erived along with pre-planned routes for interfacing with the

overall program.

Equipment Regquirements

All work will be done on the AFIT VAX 11/780 (SSC) running
under the UNIX operating system. The VAX currently supports the
ROSS programming language and Franz Lisp, which will be used for
the operating system and planning system design respectively. No
problems are anticipated in integrating the operating system and
planning system since the ROSS language is compatible with Franz
Lisp. Nevertheless, interface points will be defined in an

effort to keep the two systems as independent as possible.

12

N A O SR S S Syt e n e e et . AL A SR s 2 el AR o
(S NEI BIEPIEERIA AAAL MARO G E af S g S gl SPh L VNI S '8 2 ton st are S v s

I
AN
. A"A'AJA

W4

«"d
. ".'
- Ay 2
e

f 4
s
LA

il

-
,l' lr,
Lo)
y

ol s R4

L

| (o

Lot I PERCERPL P P

.......

N e e Y, ’.'-' S I L :
. - «® 78wt et e . ~ e
'.'.'.‘_’"_. A Al MERIR, P A SR ST, i WL

II. Autonomdous Vehicle Operating System

Introduction

In the early days of computers, one might have defined an
operating system as the software that controls the hardware,.
Today, there is a significant trend for functions to migrate from
software to firmware, or microcode, Thus, a definition of an
operating system today might be the software and firmware that
make the hardware usable. The hardware provides the computing
pover while the operating system makes this power available to
the user (1:5).

An operating system is primarily a resource manager, and the
resource it manages is the computer hardware, Some of the tasks
the operating system performs are:

1, Scheduling processor time
2. Scheduling storage access
3. Recovering from errors

4, Facilitating input/output

5. Interfacing users

Most computer users are familiar with the last function
mentioned: 1interfacing users. The operating system provides a
friendly interface with the actual computer hardware, and most
users today are unaware of the operating system”s other
functions. The other functions, however, are some of the opera-

ting system”s most important functions, and the ones that are of

13

......
......
.........

PR
By Ay By Ay v, 0 Y

v oroy
« % v
e

e
]
Iy

it

ry
e

e e
PR
o
P o

ey
el

R L N el
e e ‘
""".' _‘j

R -'.J s
.

»
s e
AN I

v e 4

AR L) LA E &

most concern to this thesis effort,

The other functions represent low-level tasks that the
operating system must perform in order to make the hardware
usable. Scheduling processor time is an important function in a
multi-user computer environment; it allows many users access to
the computer’s main resource -~ the processor. Likewise, schedu-
ling the users access to storage devices is equally important im
the multi~user environment because it allows data to be readily
available for the processor’s use. Finally, recovering from
errors is a vital function to the smooth operation of the multi-
user computer environment., It frees the human supervisor from
the job of restoring the computer to operational status each time
a tape drive or disk was unavailable to a user. Thus, it allows
the supervisor to concentrate on more serious errors, such as
hardware errors.

As mentioned.eatlier, these tasks are low-level tasks impor-
tant to the smooth operation of the computer. In an autonomous
vehicle, low-level tasks such as these could be performed by a
conventional operating system. However, with the addition of
intelligence to the vehicle, new functions must be performed that
cannot be handled by a conventional operating system. More
flexibllity 1s required inm the operating system in order to
handle situations that may not have been known a priori (11: 3).
Conditions such as hardware errors and unavailable storage de-
vices can be anticipated and allowances can be made. However,
when specialized functions are being performed in an autonomous

vehicle, such as route planning, and a previously unanticipated

14

AT R T,

»

»
i

. N
,“‘:-.

N

B M

P
. YAt
PR

.
P

e Tr Y vm

T yrr e e '{'- o
-' Sty . e

PP R I

L3

d
~

condition in the environment arises, what actions should be
taken? Should available fuel resources be shared equally among
all on~-board devices if the situation is threatening to the
vehicle? Or, should maximum effort be expended in planning
evasive manuevers? If an evasive manuever strategy is decided
upon, attention should be given to the mission planning function,
and unnecessary on-board equipment should be shut down. Deciding
what course of action to follow would be the job of an intelli-
gent operating system. The more conventional operating system
could easily handle the error conditions that might arise when it
trys to access equipment that has been shut down. So, what is
needed is a more flexible operating system that can deal with the
specialized intelligence functions in an autonomous vehicle.
The specialized intelligence funtions in an autonomous
vehicle can be broken down into four categories:
1. Mission planning
2. Route planning
3. Execution monitoring
4., Error handling
Each of these categories may have associated with them subspe-
clalties that are vital to the correct operation of other
specialized functions. Nevertheless, there Is a need to drive
each of these mechanisms in the proper sequence and not just in a
straight-line fashion. Hence, the need for anm intelligent opera-
ting system to control these functions.
The last function performed by a conventional operating
system mentioned earlier is communicating with users. An autono-

mous vehicle may need to communicate with a human in order to

15

r'd ’1"‘-"{{" .

oy Lo
N

v T
*y
v

“

.
'

.

03

A A A tir e et i i e Dol U A M s

receive new instructions; however, the process is a specialized

function based on the available I/0 devices and language support.

*d

Communication with an autonomous vehicle might be through a cable

T v vrww g
e r M

PR
o
'
o,

data-link between a main-frame computer and the vehicle, or

’
e

through an on-board input device such as a keypad (12:8-9).
Various other I/0 devices have been explored and future progress
in speech recognition may allow the human supervisor to talk
directly to the autonomous vehicle.

The language used for communication might be a specialfzed
control language (11:10), or the system might support a natural
language interface. In any case, the mode of communication is a
function of the design of the autonomous vehicle, and is a spe-
cialized function of the operating system that will not be consi-
dered here. However, the design of the autonomous vehicle is
also important to the other tasks that the operating system
performs. Therefore, vehicle design should be considered in any
operating system implemention., The effort here was to keep the
operating system as general as possible; nevertheless, a model of
an autonomous vehicle was used as a basis for many of the

functions in this operating system.

Autonomous Vehicle Model

To serve as a basis for the operating system functions, the

AFIT Mobile Autonomous Research Robot System (MARRS) was used as

a model, The AFIT robot has been the subject of several thesis
efforts at AFIT and has undergone numerous changes from its basic 5fﬁ
configuration as a Heathkit HERO-1 robot (3). Many of the

changes have been enhancements of the basic system {n order to

LACOL SRR RIS A A B SV N At e S A A NICAC T AR SN A o A e i a8 gt S M A 08 gin o) ode siil-gtg uid cAgaAn hF g g on T

accommodate additional hardware. The available memory has been
expanded in order to provide additional storage space for the
software required to drive the new hardware. Furthermore, the
original carriage has been enlarged since the hardware enhance-
ments used up the available space in the basic carriage.

Many types of sensor devices have been proposed and
implemented on robots in research institutions and industry. The
sensors may perform their functions through mechanical, optical,
acoustic, electric, or magnetic means (11:6-9). Numerous types
of sensor devices are available, and each one provides certain
advantages and disadvantages. Regardless of the type of semnsor,
effective use of the sensors is required of an intelligent
vehicle in order to accomplish its mission goals. The sensors,
however, should provide the capability to detect obstacles,
orient the vehicle, measure the distance travelled by the
vehicle, and determine when objects have been grasped.

The AFIT MARRS robot has some of these capabilities.
Specifically, the MARRS robot has been modified to include the
following sensors:

1. Thirty-two Polaroid sonar transducers
2, Optical shaft emncoder subsystem
3. Laser barcode reader

4, Gyro-compass

These sensors allow the robot to detect objects in the environ-
ment, locate its position in the environment, and determine its
heading. Therefore, the sonars, optical shaft encoder, and the

gyro-compass were selected for modelling in this thesis effort

17

.........

..........

............

3,

R,
Fas

A ¢

:«:"

. -_';' .
.

%

..
IR
.
LR
PR

F
o

PR . v

ettt
LY e e e
I R e

2’

R RO

s ' e e
AN

L
T a

R

.
o Ny Y
h. ‘J“
Wl S
I
A
<
-
g
\
-
o
"y
o«
.
L}
N
.
.
-_.“
|
S
- N
I .
-
-
-
[

q..‘:. ¥

PACNOAD)
SN

s :' v ‘v'.u' .-' g
.
.

e
.

-

.,
W .

o
* « Ve o

WA

o e e
IO I ST

because they represent the minimum sensors required in order to
navigate. In addition, an end-effector sensor was selected for
modelling in order to give the vehicle the capability to deter~
mine when objects have been grasped.

The MARRS robot is a multiprocessor system based on the
Motorola 6800 family of microprocessors (3:8). A separate
microprocessor controls the various sensors while another
microprocessor acts as the main drive computer. Because the
MARRS robot uses the 6800 family of microprocessors, its memory
addressing capability is very limited. The basic software re-
quired to support the sensors and the drive mechanisms leave
limited storage space for any elaborate planning and navigation
software. Therefore, a method is needed to conserve memory space
and facilitate processor to processor communication., The
approach taken in this thesis effort was to use a shared common
memory, or blackboard, in order to allow processor éo processor
communication and minimize duplication of data throughout the

system,

Intelligent Operating System Tasks

Hayes~Roth (8) has formulated a planning model in an attempt
to emulate human behavior in constructing plans to accomplish
errands. An important concept that arose during their research
was that of opportunism. Human subjects were given several
errands to perform and they were to construct a plan to accom=
plish all the errands in a specific amount of time. The errands
consisted of routine activities people perform everyday such as

going to a grocery store or a bank. The subjects were given a

18

DU T P LI S S T IR T S R R S S I T R I T T

.
v g e e e LIPRCNINS I N N . . VTt e NV ®
o A SV APY W WAL VR WAL WAL A v DAL W SR R)

P AR R PN AP, AN S S PG B L RO I) - PRI I I} "-...._h..“,'..'.
. Cat .

AL

DR o T
"l

l'.f'l' f‘ .
's s f:r‘r,v_

.
v

A 04

N
B
-‘

‘

. map of a city with the locations of each errand, and the methods g
&Y .

~

s they used to comstruct their plams was recorded. ;(
. The methods the subjects used to begin their task varied. :3;
; However, throughout the planning process the subjects used simi- gi
: lar methods to arrive at a solution. A subject may have begun f{

the planning process by making abstract decisions about features
- of the plan such as accomplishing all errands in the northwest
part of the city first, While carrying out the errands in that
part of the city, he may notice an opportunity to easily

accomplish another errand that may not have been in the northwest

o RigEa

part of the city. He may then decide to construct a plan arouand
o) accomplishing errands that are close to each other, so he may
<§ formulate a plan around clusters of errands., This ability of
o (; humans to switch from an abstract level of decision making to a
:; 2 detailed level while constructing plans was the driving force in
E the formulation of Hayes-Roth”s planning model.
:; The model they proposed was based on certain features of the
i Hearsay-I1I1 system (8:376) such as:
2 1. Multiple cooperating knowledge sources o
- 2. Opportunistic problem solving behavior 'Ei
E} 3. Communication via a blackboard E?
;v 4., Scheduler to control activities %ﬁ
. e
- In their model, the planning process was carried out by many gﬁ
different specialists, or knowledge sources, each making tenta- ;g
tive decisions for incorporation into an overall tentative plan. .ﬁ;
; R The planning activity was controlled by an executive routine that g%
.5 R scheduled specialists and invoked the appropriate onmes based on ?é
:

19

A7

________ BRI AL SR U T il Sl e Nl il M ek A e A A A A Y T TP s S e N L = .
b
(%
#;
certain polices governing the overall plan. For example, if the Qﬁ
policy is to comstruct the most efficient plan, then the execu- EE

. e 4

tive might schedule the specialist whose job it is to find

errands that are close together. The executive is driven by

Y o
:")

Xl

v

policies that the plan must meet, and the planning process {s

h)

only stopped once the executive determines that they have been

~ - w_ v
.
1

e e,

met.

L AN
i

An executive controller, a blackboard, and planning

specialists are the concepts that are the main influence to this

‘v 4

et
Wl s ey

] '.’ [} 'v

l"

thesis effort. The blackboard approach requires the operating

o
system to arbitrate memory accesses. When 1is the data in the ;i
blackboard accurate? 1If the vehicle is in motion, sensor data in NN
SN
the blackboard may be changing rapidly and might be of limited 35

use to a mission planner 1f the sensors were denied access to the

., .
B v e
o 4

st
»

blackboard. What are the points at which other fumnctions should

be denied access to the blackboard, and the data in the :
blackboard is considered accurate for a particular function? EE
Arbitrating blackboard accesses based on prevailing conditions {is i
essential to effective operation of the autonomous vehicle. 5
Just as the operating system must decide what function E:

should have access to the blackboard, it must also decide when to
schedule functions. During startup, the mission planner would be
invoked in order to plan the sequence of actions to accomplish

its mission goals. When actions have been planned, the route

ZO0 A RERTRE

S

planner should be finvoked next in order to find an optimum path

’
s
'
«2'e

to the destination if required. When motion begins, the execu-

I

tion monitor should be invoked in order to ensure the vehicle is

20

on course, If the vehicle strays from its assigned course, an
error handling function would be invoked in order to correct the
deviation., If a more severe error is detected, such as an
imminent collision, the mission planner would be invoked in order
to select an appropriate avoidance strategy. Scheduling and
invoking the appropriate functions 1s therefore a required task
of the operating system and must be based on prevailing condi-
tions in the environment as well,

There are other tasks that the operating system should
perform, such as communicating with the vehicle”s conventional
operating system; however, the two tasks discussed previously
have been chosen as basic tasks required to demonstrate the
interactions between the specialized intelligence functions in an
autonomous vehicle. As such, this thesis effort will concentrate

on these two tasks in order to allow the development of a mission

planning system.

. P
RAPE M .
B el et
. (OY
e e
o L.
’ Iy

rer
*y
.

o
an

LARA
IR
2"

v e « e

52 T B

F) .
ote

DAY

r
.
’
L e, o,

’
’

P

e a0 .,
,"," ."2‘-
. . .

et Je le

|7

ach Y

;.".A.,l..t ,l‘;

‘Il }"',". ., 'l M

AR

P L

ITII. Planning

Introduction

Planning is the process of using a problem solving procedure
to determine a course of action prior to executing those actions.
Failing to plan can lead to less than optimal problem solving,
and in some cases, can preclude ever finding a solution to a
problem. This 1s especially true when certain aspects of a
problem may interact with each other implying there is a required
sequence in which actions are to be performed. If an autonomous
vehicle had the tasks of refueling an aircraft and repairing a
hole in the aircraft“s fuel tank, the order in which these tasks
should be performed is clearly important. Repairing the hole in
the fuel tank by using a welding torch could have serious conse-
quences if the autonomous vehicle had just finished refueling the
tank, Each problem may have been solved, but a new problem has
been created from the resulting explosion of the aircraft.

Planning, then, involves knowing how the planner”s universe
may change as a result of some action, and how these actions may
interact with other aspects of the plan (13:249). So, other
than needing this form of knowledge, the planner must use a
problem solving procedure that can analyze aspects of a plan, and
thus, guide him in selecting the appropriate actions. 1In compli-

cated problem domains, this is essential since there may be

numerous interactions between goals in the plan, and disastrous
consequences could result from an improper selection of actions.

A method that is used in planning is to decompose the

7

o
DAL
.

problem into smaller subproblems (13:248). Each smaller subpro-

v,
‘y

blem can then be worked on, and the solutions can be combined to
form an overall solution. Decomposing a problem makes it more
tractable, and it is a method that is widely used in engineering
disciplines. Two approaches to planning that make use of decom-
position in varying degrees will be discussed in order to provide
a foundation for the planner designed in this thesis effort.
Next, an approach used in the problem domain of story
understanding will be discussed since some of the concepts used
in that approach have been incorporated in this thesis effort.
Finally, a brief discussion of system organization will provide a
foundation for the organization adopted here. While much of the
system organization discussion relates to the operating system
design, the operating system itself can be considered a planner,

and as such, the Hayes-Roth (8) model will be examined once

again. -

Hierarchical Planning

A hierarchical planner decomposes a problem into a hierarchy
of representations. These representations are an abstraction of

the problem and its subproblems. An example of such a

fﬁ}

[

hierarchical representation is shown in Figure 1 for the problem fﬁ§1
of planning a days activities. f}i

/
AL

e, »

K

PR)
P N)

R M

AT IS

23

_ Plan for the day

4"
Morning Lunch Aftermnoon
Subplan Subplan Subplan

q
Go to Work Eat Write

Subplan Sandwich

lﬁ Drive Buy Find

N Subplan Sandwich Terminal

(o

- Buy Gas

- Subplan

2, Figure 1. Plan for Days Activities (4:516).

The plan in Figure 1l is shown as a hierarchical structure of
subplans with the specific details on how to accomplish the
subplans left out. Instead, the subplans represent an
abstraction of the activity to be performed with each lower level

being abstractions of the details to accomplish the higher le- T

4
s

vels., For example, under the morning subplan, the plan for going R

‘.l
I

»
* e
‘ala

L]
L)
AL IOA

24 4

.
.

"

v
. o
o'

R N P P Py
e e e e s et e e e T e e SR e e e N T e o]
- o D . B > - - - - * v -

-.—Q.“
P
[a" 0,) o

2

to work involves buying gas and driving. But, buying gas re-

-
.
d

=

PR | SRR
‘l
. ¢ @ .

et}
Lolle

;5- quires having money; therefore, a subplan for getting cash is

-
v
s 0
v
LI I)
.
of

required immediately under the buy gas subplan. Getting cash,

N Ve
F: however, is an abstraction of the solution, so the next level g}
0

under that might be a go to the bank subplan. In each case Sﬁ,

specific details have been left out. Going to the bank involves

e

2

walking to the car, getting into the car, driving to the bank,

o

+t ¢ 9
‘.-“I' r'l
N S *

and so on,

)
»

N

The advantage of leaving the details out initially is that

K

critical subgoals of a problem can be considered first. By
considering the critical subgoals first, the details can be added i
in later as the general plan is formulated. This helps in redu-
cing the required search of the problem space by developing the }
plan at a2 level at which it 1is not computationally overwhelming é}'
(4:517). ‘
For a very complicated problem, the planner could easily get
bogged down if it tries to consider all possible goals in the
problem space at once. Trying to formulate a plan by first

considering a goal of opening the car door may or may not lead to

et
L
LA

an acceptable overall plan. Instead, dealing with abstractions

i
ot

of the problem helps to guide the search and reduce the ineffi-
ciencies that would result from starting at a high level of

detatil.

¢

o . T
’o A
P . 3

Besides trying to limit the search of the problem space,

r
ol

v
(]

there is the problem of interacting goals. The order in which

]

o o
.

actions are to be performed is sometimes important, as in the

A A AP
OOWA s h N
PPy

case of the autonomous vehicle with the tasks of repairing and

refueling the aircraft”s fuel tank. Two techniques have been

DA
Wl
B
PR
fy 0y fe t e
Leteta
"l

o
25 7

LY. W s £ 2 7.2 TEEREA. C.

A’

.....

e

E : :) EAE.!_'-'.!.‘-'.:‘."_L‘W.".‘—'-".“".'."“:'.".'.'r." LR AEEACAATMEEANOL WEAE AU AC I A A A4 SN A A (A 1 Tl et e Sl

used to deal with the problem of interacting goals,

The first technique relies on the assumption that goals are
independent and can be achieved sequentially in any order. The
planner arbitrarily orders the goals and then goes back and tries
to repair the plan if goal conflicts are discovered. This method
is useful 1if there is no a priori{ knowledge about the proper
ordering of goals, and it helps reduce the combinatorial explo-
sion of trying to initially determine the proper order of
numerous goals (4:520).

The planner using this technique for the example of the
autonomous vehicle tasks of repairing and refueling an aircraft’s
fuel tank might start the planning process by using an arbitrary
ordering of the tasks. If it starts out by planning to refuel
the aircraft first, later on while developing the plan to repair
the fuel tank, it may discover that welding the fuel tank con-
flicts with a full fuel tank. To repair the plan, the planner
would reorder the goals by doing the repair fuel tank planm prior
to refueling.

In the previous example, complete plans were developed
separately for the two tasks; however, in some cases it may be
better to intertwine plans. This type of planning is known as
non-linear planning, and it i{s the second method for dealing with
interacting goals (13:267). A non-linear planner would not
arbitrarily order goals. Instead, plans might be developed
in parallel, and the interactions of goals analyzed as the
planning proceeds., Figure 2 shows what a non-linear planner

might do for the two tasks of repair and refuel aircraft”s fuel

26

S

v
DR

-

.....

Refuel
Alrcraft

Get Hose

|

Move
to Aircraft

[

F111l Tank

Repalir
Fuel Tank

!

Get Torch

|

Move
to Afrcraft

Weld Hole

Combine Plans

1

Get Hose

|

Get Torch

1

Move
to Aircraft

I

Weld Hole

|

Fill Tank

LIS
v acat g

Figure 2.

Non-linear

Planning.

'-~,
DA
o .
o e)"c'-
Iy " e o w

acah 22N
b} 72N

[N AL T

v e
""
.

_. .,..
s TR
o1 e

l

v

.
Ly

N /-r'l

s s HEEER » ¥ » VS FiENY.C ..

L " 1L I

tank.

Initially, no order of goals is assumed so the planning
proceeds in parallel, and at each step a set of critics examine
the plan for interacting goals. The critic notices that a move
to the aircraft 1s called for in both plans, so this step is
combined so that only one move to the aircraft is performed. The
vehicle would get the hose first, then get the torch, and finally
move to the aircraft. At the last step of the plan, the critic
notices that welding the goal conflicts with a full fuel tank, so
it proposes to do the welding prior to filling the fuel tank.

Now this may not be a safe procedure, but it 11lustrates the
concept of non-linear planning. By using a set of critiecs to
examine goal preconditions, intertwining plans can be developed
for the conjunctive tasks of refuel and repair fuel tank.

Figure 2 also illustrates the second method of plan
construction: nonhierarchical planning. The problem of
interacting goals 1is common to both types of planners; hence, the

discussion here also applies to nonhierarchical planning.

Nonhierarchical Planning

A second method for constructing plans uses a
nonhierarchical approach., The term nonhilerarchical is misleading
in that it implies no decomposition is used in the plan construc~
tion. This is not the case; both hierarchical and
nonhierarchical planning use a hierarchy of representations in
plan construction, The difference is in the level of

representation used in the decomposition. A hierarchical planner

generates a plan structure in which the highest levels are very

.....

."..'." v"
P
._"& [N

Cl

L
o
&

el
.I'. -.. l‘. l'. !"-
AR

A P
-".."’-"', -59
. l. a P

AN

s &

14

. Ty
PO
[y

R -.. “ ."

. .
KRN AIN)

[L
¢
Iy & s

P R RS b2
o Ve L Lt
s

s

'.l
e
Ys

-+
-
>~

..,
I
Yt ’
2 .

sketchy, and the lower levels are very detailed. A

:A SR nonhierarchical planner, on the other hand, does not distinguish
between aspects that are critical to the success of a plan, and
those that are only details (4:517). Figure 2 illustrates a
nonhierarchical plan and the drawbacks associated with such
planning.

Each step in the plan shown in Figure 2 is really a detail
that could be filled in later once policies governing the planm
have been handled. For example, it might have been better to
start the planning process at a higher level of abstraction, such
as considering the safety aspects first., The planner would have
established a subgoal of being safe, and lower level subgoals
would have arisen hinged on this policy of being safe. Potential
lower level subgoals might have been related to eliminating
dangerous conditfons such as fuel vapors and sparks. Proceeding
from this level of abstraction would have guided the search for a
solution and helped to reduce the possibility of having to reor-
der goals. Goal interactions may still occur; however, the

critical aspects of the plan are considered first. i}

Nonhierarchical planning, therefore, is not of much benefit iﬁz
in complicated problem domains where numerous goal interactions ;:g
may occur. The planner gets bogged down in sometimes futile ‘3
searches of the problem space in an effort to consider all goals]
at only one level of abstraction, rather than a hierarchy of %:ﬁ
abstractions (13:271). Nonhierarchical planning, however, was iii
used in some of the earliest planners, and {t is mentioned here :gs
to serve as a contrast to hierarchical planning. ;%%

>
29 Y

Lk e i AN B i YA R A S

Metaplanning

Planning, therefore, is the process of deciding on a course
of action. There is a richer knowledge, however, that human
planners use in this process that has not been discussed. What
constitutes a good plan, and what are some of the techniques
human planners use in constructing good plans? This type of
knowledge is knowledge about the planning process itself, and
Wilensky (15; 16) used this knowledge, known as meta-knowledge,
in his study of natural language text understanding.

Wilensky used as a basic premise for his research the fact
that in order to understand stories, the understander must have

knowledge about the planning process. As an example, consider

the following story:

(Q- John was driving to the store when he noticed a
tornado coming his way. He immediately turned the

car around and drove back home.

A possible explanation for John”s actions might be that he consi-
ders preserving his life more important than what is ever at the
store. But, what is needed to arrive at this explanation? The
answer is in how humans formulate plans,

From the first statement, we can infer that John”s goal was
to be at the store, and his plan to achieve that goal was to
drive to the store. From the second statement, we can infer that BOREY
John”s goal was to be at home, and his plan was to drive home.
This, however, does not explain John”s actions, We also need to »ﬁ“
know that tornadoes can be life threatening, and humans have a

desire to avoid such situations. With this knowledge, added to

30 !

........................

the knowledge that humans use to construct plans, we can arrive

at the above mentioned explanation. ¥
P
Figure 3 illustrates the planning process John may have used ;:W

in deciding what to do in his situation., He had two goals, to

L AN B

L Y P
'-'4'!' -
Nt 0 2

preserve his life, and to be at the store. He realized that

. \”’.
Setel

» Ty

these two goals were in conflict with each other, so he used his

knowledge about planning to resolve this conflict. An acceptable

. e
R W e

h

E. e

Preserve Be at Goals
Life the Store

Meta-goal T:
Conflict Resolve RS

Abandon Goal Meta-plan

Preserve Life Goal

Go Home Plan i;

Figure 3, Meta-planning Process.

31 '

PNV

Al At S e et e Wbt Sk sl Bat Bal gt tpt hat Fas i it Jhe gt gta JVg vat o bl p ks SIC o' R AT N

procedure to use in situations where conflicting goals occur is
to abandon the goal that is considered least important. John

used this planning knowledge to abandon the goal of being at the

store, With only one goal left, he comnstructed a plan of driving
home to achieve that goal.

Now, with this added knowledge about how humans plan, we can
arrive at the explanation mentioned previously. We needed to
know that humans sometimes abandon goals in favor of more impor-
tant ones. This knowledge is used in many types of problem
domains, and it is not just applicable to the above story. Like-
wise, a good planner must have this knowledge available in order
to construct acceptable plans. The knowledge, therefore, can be
used by both an understander and a planner if it is in a form
that can be shared (16:31).

Wilensky organized this knowledge around four themes he
called meta-themes (16:31), Each meta-theme gives rise to
goals, known as meta-goals, for which meta-plans might be appli-

cable. The four themes are: -?w

1. Don“t waste resourses

.
»

.
AP
»

2. Achieve as many goals as'possible
3. Maximize the value of goals achieved

4. Avoid impossible goals N

John, in the previous example, realized that he had counflicting
goals, so the meta-theme maximize the value of goals achieved ' l.ﬂ

came into play. The meta-theme intiated the meta-goal of [:4

choosing the most valuable scenario. A possible meta-plan to

REASOL Ll 1R

achieve this meta-goal is to simulate the outcome of each
conflicting goal and then select the most valuable outcome (15:
72; 16:209-211). John simulated the outcome of preserving his
life and decided this was the most valuable scenario as compared
to being at the store.

Meta-themes, which give rise to meta-goals and meta-plans,
can be used by both an understander and a planner. Since a truly
intelligent autonomous vehicle will need to understand, as well
as plan in any complex environment, it is these concepts that are
most appropriate here. However, in order to use these concepts,
the planner must be able to detect that it has goals, as well as
generate plans to accomplish them. Wilensky proposed a planner

based on the following elements:

1. Goal detector
2. Plan generator

3. Executor

The goal detector is the inferencing mechanism that passes the
goals to the plan generator. The executor simply carries out the
plans proposed and detects any errors in the plans (16:215),

We now have the elements an autonomous vehicle can use to
operate Iin a complex environment, The inferencing mechanism can
use knowledge about the planning process to understand situations
that may occur in the vehicle’s assigned tasks, especially if {t
is working in conjunction with other autonomous vehicles. But,
by providing it with the capability to understand its envirom-

ment, the planning process can be guided more intelligently.

What 1s needed now 1s a way to organize and direct these various

SIS

.
“._-ri
Ry
Y

r

by e]
v,

"

Caee
el

st e

l’"“ r
P ,"’l'
') “r- AN RN

.l
D4
l._" ;5

.’
»,

.

BT
"I'

-
'i

Ll'l 4."
Lk

- .
S
e

s,

|

!
elements of the planner. 4

System Organization iw

v

One of the simplest ways to organize a planning system might

,
ABAOE
l. ‘:l'

¢
Lol i e

be to write rules containing all the knowledge, and then let the

planner use those rules to find a solution. In a complex domain,

Y 7_3‘”
,‘1

[
Wt te

a_as vt 2

-, however, the number of rules can be large, and the system might

.
.

become bogged down in searching through the knowledge base.

AN
a2 Therefore, an organization scheme is needed that splits up the ek
? knowledge in a large domain into separate modules. The black- é;
i' board approach is one such scheme, and it was discussed earlier ié;
5 in Chapter II in the context of an operating system. It is now s#
; looked at in a little more detail in the context of organiziag ;&
f‘ and controlling the activities in the planning system. ;E

Q (!‘ As mentioned earlier, the blackboard provides a means of

communication between knowledge specialists in a planning system.

j.

The elements of a planner mentioned in the last section, a goal !

detector, plan generator, and executor, will all need to be

e
+

P
[
e

controlled, and the knowledge they use can be shared. The goal

L B
e

+7

e

detector can use knowledge about plans to infer goals, while the

= plan generator can use the knowledge to comstruct the plans,

I'd

AT

2

’,

Likewise, the executor can use the knowledge to simulate what

might happen carrying out the plans in its effort to detect

~

a errors. So, the blackboard can be used for communication, but the

‘r

three elements must still be invoked at the proper time., Hence,

3, % %N
ers "t

the need once again for the operating system to direct activi-

ties,

’
.
vt

R

Hayes-Roth“s planning model used an executive controller to

- N
34 v

direct activities in the planner (8:380). The knowledge
specialists in the Hayes-Roth model had associated with them a
set of triggers that specified conditions under which they should
be activated. When conditions were favorable for a knowledge
specialist, they were added to an agenda list of knowledge spe-
clalists to be invoked. Based on policies about the overall
plan, knowledge sources were scheduled depending on which
knowledge specialist had the ability to deal with current poli-
cles. Once a schedule was decided upon, the knowledge sources on
the agenda were invoked, or fired, and they used knowledge in the
blackboard to formulate hypotheses. By formulating hypotheses
and writing them to the blackboard, the knowledge specialists
might alter conditions; thus, other knowledge specialists might
trigger and be added to the agenda 1ist (8:380; 13:281).

In this manner, activities in the planning mechanism are
controlled based on prevailing policies. The planner design
discussed previously can likewise be directed in its planning
process, The goal detector might work in conjunction with an
execution monitor to interpret conditions in the vehicle’s
environment., Goals that the detector generates might trigger the
planning generator and cause it to be added to an agenda. The
goals may not always trigger the plan gemerator, but they could
trigger another knowledge specialist such as an error handler,
Likewise, the plan generator might trigger an executor as a
result of the type of plan generated. If the plan involves a
certain amount of risk, it might be wise for an executor to

simulate the plan and detect unwanted occurrences. Nevertheless,

[..A..i..i_'.;","',»; t‘ .f '

Ja e T
A]

)
.

)

%

’ g.-.& «_r
Y45

IGO0
LRI A o
ISR |

L

P A

.
s 4

.. -
e e

ot
P AR
(O R T B

LI L R g .,

S e e e '

A A I i}
. DI TR] LI,

» e e
'1 . Sl .
. P T
at ot e

Y P
LR A
5t

g

e

P
.

.- "

L

IO

PR

~—
c e
.

the activities are directed by the operating system based upon

v the vehicle”s mission and current conditions in the environment.

.« e
Yo v e e e e el

~ D

"‘r‘l*’"‘l‘
y A
a7

o

O]

.'1‘1'4

(AN
- \\

A o
- » t‘-
< XY
- L
iy o

. Pt

- LY
5 e

'.
'

EY

’ 2 4

.

LI 3
NI dad
d -

w -
o
- o
« -
A -
" - N
« ,5_
- 3
L) - -
. S0
. SR
AN
N A
SR
. -
. R
N S
. »
. o
.",n
e
- N
(‘,
"
o
K .
»-
- -
- i
n'. '.-;'
B -
g PR
= -
> .
T . -
K
P
.
.
.
s
A
-
-..
-
* .
" -
.,

" Ny NN
NI N

S N

'.: P :s:}
g C ot
- [

*
)

-
RS

' Ly,
LA/

A

.
ot

AN

Pa Riw b’ 08"tk w R . . A BRI A "2 aliat i TR TR d d Xy -

IV. Operating System Design

Introduction

The factor influencing the design criteria for the
intelligent operating system was the need to control blackboard
accesses and sche{ule appropriate knowledge sources, Underlying
these two functions is the relationship between a mission
planning mechanism and the operating system. The two are not
totally independent. As mentioned in the discussion on planning,
there is a need for a goal detector and executor, as well as a plan
generator. Just as the duties of planning and understanding can
be shared by one mechanism, so can operating system, goal
detection, and executor tasks be shared by one mechanism.

A natural level at which to detect goals is at the operating
system level. Since the operating system is essentially an
interface between the real world and the computing environment,
the interpretation of sensory information at this level camn be
readily transformed into appropriate goals for a plan generator.
Likewise, since {t is the responsibility of the operating system
to carry out plans generated by the planner, 1t is appropriate to
place the tasks of executor at the operating system level to
detect any errors in the proposed plan. Once again a
relationship exists between two tasks: the executor function

requires the ability to detect goals. Therefore, added support

is given to the decision to group these functions at the

e
2, 'o_':‘l °

w-‘-

s 9
N A
s '.

O g ol ff-' y’
.

0

t4 ol an e

oo e
R R

operating system level,

There are further arguments for placing these two tasks at
the operating system level other than their inherent relation-
ship. As discussed in Chapter III, the function of the executor
i1s to carry out the plans and detect any errors in the proposed
plans. This is the concept of plan projection that Wilensky
proposed for his planning mechanism (15:17; 16:218). Since it
is the primary task of the operating system to actually carry out
the proposed plans, the function of plan projection can be
performed at this level through simulation. Prior to running
such a simulation, the current state of all resources would need
to be saved so that the simulation would not affect vital infor-
mation. By using the operating system for plan projection, the
complexity of the planning mechanism is reduced by eliminating
the requirement to duplicate operating system functions at the
planning level.

Hence, with these additional tasks the design criteria is
formulated based upon the relationship between the operating
system and planning mechanism. The tasks to be performed by the

operating system are:

1. Controlling accesses to the blackboard
2. Scheduling knowledge sources
3. Performing goal detection

4, Performing plan projection

The task of goal detection was listed separately rather than
grouped with plan projection since this task must be performed

when the vehicle is actually carrying out plans as well as when

.........

R A

-

it 1s simulating plans. Thus, it 1is not a duty that will be
performed solely during plan projection.

The autonomous vehicle model discussed in Chapter II re-
quires the abllity to simulate a multiprocessor environment with
numerous knowledge specialists communicating via a blackboard.
The asynchronous nature of this computing environment influenced
the selection of the programming language for the operating
system. The ability to simulate knowledge specialists, as well
as time progression, were criteria for language selection. The
time constraints on this thesis effort would have precluded any
development of a programming environment for the operating system
in addition to implementing a planning mechanism. However, a
suitable language exists that meets the requirements of this

thesis.

The ROSS Language

Object oriented programming languages enforce a message
passing style of programming. A program written in this type of
language 1is characterized by a set of objects, or actors, that
interact with one another by passing messages. The actors have
associated with them a set of attributes and message templates
that invoke a behavior whenever a message is received that
matches a template., The behaviors may be an explicit computation
or they may involve passing messages to other actors. In any
case, this style of computation is suited to simulations in

domains that involve autonomous interacting components.

The ROSS programming language i{s an object oriented language

[

DAY I
[e lrl"l.
ot
s

N
el
R
oy

D
iy
-
.
=
L)
~
w

lv‘l‘ . " .l l.' -‘.
_',A‘

'
e,

8

AR 2

LT T
L Tt
. o f
ORI et a
PSP BN I
B
Calalal

P

—— -

[(ARATR] AR

@

SR

'''''''''

whereby processing is done through means of message passing among
objects or actors. The ROSS language Is ideal for simulating

processes in dynamic environments where situations occur in an

asynchronous fashion; furthermore, it provides a facility to simu-

late time, and hence, a means to simulate parallel processes,

In this project, the parallel processes are described as a
collection of actors in the ROSS language. Each actor has asso-
ciated with it a certain behavior, so that when a particular
message 1is received, it will perform some function or ask someone
else to perform a function. The actors can be considered autono-
mous processes, and therefore can be used to simulate individual
microprocesscrs in a multiprocessor computing environment.

Actors are created in ROSS by an explicit call to a built-in
ROSS actor. So, if we had a need for a robot actor, then the
following ROSS command would result in a robot actor being

created:

(ask something create generic robot)

The actor "something” is the built-in ROSS actor that {s present
in the ROSS environment at invocation. The preceeding command
has now created a robot actor that can be programmed to exhibit
certain behaviors when receiving messages. An example behavior
for the robot actor might be:
(ask robot when receiving (jump up and down)
(tell user I can”t do that))
So, when the robot actor receives a message telling him to jump

up and down, his reaction is to send a message to the user actor

.....
g

v v
L
v B

]

-‘/’

L

..
o -

. SO e e e e e e ey, v et e T
TR ISP IR S SERDRBREPE L. 4. L PP AP SRR

¢ SENBY .

T AR S, A, 0t

N

3 JENAASPRIIRY CAh

ottt
W -

@

telling him he can“t do that. Likewise, the user actor might
have a message template for this situation that causes him to
exhibit a certain type of behavior when he is told someone can’t
carry out a command,

The ROSS language also provides a facility to allow actor’s
behaviors to be planned. A planned action can be triggered
corresponding to a certain time step in the simulation. Thus,
events can be triggered that are not the result of receiving a
message from another actor. This capability is a conVenient way
to simulate the actions of a microprocessor that is interfaced to
a real world dynamic environment. The computations it performs
are due to external inputs and are independent of events in the
overall computing environment., Indeed, this facility is
desirable during plan projection in order to provide a more
thorough analysis of proposed plans. This facility can be used
to simulate unexpected occurrences during plan execution fn order
to investigate the existence of alternative plan scenarios.
Planned actions such as a course deviation during motion simula-
tion may have the effect of using up surplus fuel on the autono-
mous vehicle, and thus necessitate a refueling stop prior to
carrying out any of the assigned tasks. By simulating
occurrences such as these, a more efficient plan could be
developed taking into account the likelihood of unplanned events
occurring. Thus, 1f course deviations will adversely affect the
vehicle”s fuel status, a plan could be generated that would
involve refueling the vehicle prior to beginning other tasks. In
this manner, the need to suspend a current task during plan

execution is eliminated during plan projection by reordering the

41

'l"

TR ,-11
PR "
2o .

A A A A

3
ke

_.__

'V‘I .'-'
i
v‘.

5.

X

1" ‘4
NN O

£
«
.

YNy T Y
,
»
. L

.‘:l"’":'." A
‘0 gt

T,
I AR
PR

v f' .
"l 0
R

L
Bk b fu?a fs ln

&

tasks. o

These characteristics of the ROSS language were used in both

the design of the operating system and the planning mechanism, sf&
.

)
. N
The planning mechanism itself was considered a separate actor r:zy

5

that was invoked and guided by the operating system. However, a

. e

different approach was taken in the design of the planning ;ﬂ;

system”s architecture in that the intermal controlling mechanisms i?f

' did not rely on message passing. The interface between the %}{
. operating system and planning mechanism, however, does rely on siz
message passing. Hence, a discussion of the operating system :ig;

j program structure is vital to understanding the planner. ?%;
The Program Structure ;

Figure 4 shows a block diagram of the program structure, :

. tb The autonomous vehicle {s modelled as a multiprocessor system “f

using a shared common memory, or blackboard, for communication

between processors. Four processors are modelled: a main
! processor, and three sensor processors. O

- The main processor controls accesses to memory and Invokes }i:

routines to monitor route execution, plan missfon tasks, plan

X NI

routes, etc. Three sensor processors provide heading informa- e
5} tion, sonar information, and distance travelled information, i}
Ef The Main Processor. As mentioned earlier, the main jﬁi
5 .

processor controls accesses to memory and is responsible for
invoking appropriate routines. The main processor, shown in

Figure 5, is modelled in the ROSS language as the following

) . S L

42

LR Ay

PRSI S SRV Y

'L

DR A

N A

N A
LA A

AN LN T T B

PPN 8 T3S

A

MAIN
PROCESSOR

SENSOR~-1 SENSOR-2
PROCESSOR

PROCESSOR

SENSOR-3
PROCESSOR

\

/

BLACKBOARD

Figure 4. Program Architecture,

EXECUTION MATH

ERROR
HANDLER

BLACKBOARD

MOTOR

SCHEDULER ARM

ROUTE
PLANNER

MISSION
PLANNER

Figure 5. Communication Among Main Processor Actors.

. .-
5t

L

. O.-."

YL,
e
.
-

B
Y
»

ey——"w

..................

collection of actors:

1. Scheduler
2. Execution
3. Math

4., Errorhandler

5. Motor
6. Arm
7. Route-planner

8. Mission-planner

The scheduler actor is the main actor and is responsible for

controlling accesses to memory and updating the clock during the

(!, simulation. The scheduler acts as the top level in the overall
operating system whose job it 1s to handle requests for bus
access and to ensure that appropriate routines are invoked. It
ensures that equal access to the bus is given to each processor
during a simulation.

At simulation startup, the scheduler directs the mission
planner to formulate a plan based on a certain policy. Once a
plan has been created, the scheduler then begins passing messages
to the appropriate actors in order to simulate carrying out the
plan. Messages are passed based upon an agenda created by the
mission planner. The agenda is a list of messages to the actors
most capable of carrying out the task. In this manner, the
control flow has been initially specified by the mission planner;

however, the scheduler has ultimate authority in deciding if

PN AN

M T T N o o o e s o Ty Ty T 7y ¥ T ¥ = P —% W w TR R RN
L]

A Y

additional actors are required to perform a task.

L

If a particular actor is unable to carry out a task, then

the scheduler detects the type of error involved and modifies, if

-
>
1]

’

.
et

.

-

. ‘..-
b ataad

.
A

.

.
5

N)
necessary, the current planning policy and directs the planner to ;fﬁ
replan a task. Thus, the job of goal detection is performed by ;‘E
the scheduler based upon messages passed from other actors. Qigj

When the scheduler detects a task failure, the current :3;2

v

s,
«
.

agenda is suspended while a new plan is formulated to handle the

1]
[}
)
»

«

error condition. Therefore, it 1is not necessary to start the

’

simulation all over again, but instead action can resume at the
point that task failure occurred. Furthermore, any unusual e
operations required, such as saving the current state data, are

suggested by the mission planner during plan generation based

'lg upon the type of task failure. Thus, a degree of flexibility is PR
incorporated in the operating system by sharing the duties of 35&
program control flow with the mission planner. Efz

The execution actor is responsible for monitoring the motion ifa
of the autonomous vehicle. Prior to a motion simulation, the f;&;
execution actor i{s called by the scheduler to determine if the ﬁ?;

autonomous vehicle is at the proper coordinates and the proper

heading. The execution actor then notifies the scheduler 1if the e
autonomous vehicle is not in the proper location or heading. :m§

Otherwise, the execution actor will report that no error exists,

and the scheduler will then start the motion simulation. NN
BV

During the motion simulation, the execution actor is invoked e

-.':-.‘:

by the scheduler each time the blackboard is updated. The execu- i_ﬁ.
tion actor checks to see {f the autonomous vehicle Iis on course E:ﬂ
SN

N

N,

45 wt ?

...............................

N

............................

by comparing the current heading of the vehicle with the planned
heading. If any course deviations are detected, they are
reported immediately to the scheduler. Finally, the execution
actor updates the current coordinates of the vehicle by using the
math actor to perform the necessary computations.

The math actor uses information in the blackboard to deter-
mine the current location of the vehicle. It takes the
coordinates of the start of the current route segment, along with
the distance travelled and current heading, and computes the new
location of the vehicle, This information is then stored in the
blackboard and control is passed back to the execution actor for
further processing., Although this computation could have easily
been done by the execution actor, future enhancements of the
system are expected to require more extensive computations;
therefore, this computation was given to a separate actor in
order to make upgrade easier,

If a course deviation 1s reported by the execution actor,
the scheduler takes immediate action by invoking the errorhandler
actor. The errorhandler”s job is to compute a new course heading
based upon the planned heading stored in the blackboard. The
errorhandler computes the proper heading and then replaces the
0ld value in the planned route segments with the new value. The
errorhandler then determines the amount of turm required to
reorient the vehicle and then passes this information back to the
scheduler for processing.

A separate actor called the motor was created to simulate
actual movement of the vehicle. The motor actor processes two

types of commands from the scheduler: a turn command, and a move

46

>

(ol ol g . _
' !

e
e
(2
3

m % e
DN A
¢)
PR AL
v % Cv e

.-
K M
AT

forward command., If the motor actor receives a turn command, it
tells the sensor actor to increment or decrement its heading the
appropriate amount. Likewise, 1f it receives a move forward
command it tells the sensor actor to increment its distance
travelled attribute the appropriate amount. In this way,
changing sensor readings due to movement of the vehicle are
simulated. Furthermore, the motor actor decrements the amount of
available fuel on the vehicle in order to simulate enmergy expen-
diture with each movement command. For the purposes of this
project, however, the motor actor is not considered a part of the
main processor, but instead represents the actual drive mechanism
on the autonomous vehicle.

The arm actor represents the autonomous vehicle”s end
effector. 1Its priﬁaty function is to update the blackboard on
the current state of the end effector. For example, if the actor
receives a command to extend the arm to a certain x and y
coordinate, the arm actor first checks the blackboard to
determine 1f the arm is already extended, and if so, where., If
the actor 1s capable of performing the task, it updates the
blackboard based upon the command it received. Therefore,
impossible goals can be detected by the arm actor by comparing
the received commands with the current state stored in the
blackboard. Hence, error conditions, such as trying to grasp an
object when an object is already being held, can be detected.

The route-planner actor is an attempt to emulate the actions
of a route planning mechanism. It in no way approaches the

complexity of a required route planner, but instead was created

T
r‘r".'
¢
W

et
A

y ot
A A
AP

1
A

A

)

E P, .
. el
. ' L.
. ettt
« . s S, .
‘ak N

ala

P
[
—i

e,
P A
2t

A .

. .
PR

.
PR

P

'//'Iﬂ
"‘: r . s
- s

s &S5 5, 0
l" .

A
-)

A

(é

in an effort to provide basic route information. The actor

merely retrieves a stored route based upon a message detailing
the start of the route and the goal. It has none of the
flexibility exihibited in Monaghan’s (10) implementation im that
it cannot generate routes from arbitrary starting locations. All
routes are preplanned and stored by the user in a primitive world
model; the route actor merely retrieves the appropriate route.
This type of implementation does put constraints on the overall
planning mechanism in that {t limits the type of movement
allowed., However, the implementation was sufficient to
demonstrate the other key mechanisms, and as such, provides a
high level look at the type of interfacing between the operating
system, mission planner, and route planner,

The route actor can receive two types of messages, It can
be told to plan a route from the current location to a specific
goal location, or it can be told to plan a route from a specific
start location to a specific goal location. The two situations
were selected based upon the way the mission planner formulates
its plans and they will be covered in more detail in Chapter V,
If the route planner is to plan a route from the current location
to a specific goal location, it first must determine its current
location., The route planner does this by checking the blackboard
to find the current state of the vehicle. Once it knows its
current location, it uses this Iinformation along with the goal
location to satisfy conditional statements. If a route exists,
then it 18 stored in the blackboard, otherwise a task failure is
reported., The second type of message 1s handled in much the same

way by the route planner except there is no need to initially

R 5
ot s S T

o

I
"
42 , o

»
.

.
G

v
-4

LA AN '.’r'
LI
PR
LA
W

"

‘I’i

v

.
1.-
-

AL S S LA K DDl s it At dbIMER O T A T

o

o~

[

:;A e
qﬁﬁ}
3 e A’y

fe

check the blackboard prior to searching the route database.

s
ans

.
L
',
!
'l
LY

Obviously, this type of implementation can lead to a large

~
-
L
LI

{l‘{

database for even a small world model. The number of routes

- v '/'}‘
A

required to handle all possibilities in an environment with only

7
LAY
'
'r ‘o
L

252 0 a0

¥
3

5 objects is 20 routes, and in general for an environment
with n objects, n(n-1) routes are required. Again, this only
; allows direct travel between objects. The available routes in fﬁ:

this program will be looked at in the discussion of the world

- model.]
;E The final actor grouped under the heading of main processor iﬂf
2 is the mission-planner actor. The mission-planner actor is more ;Z%
of an interface between the ROSS environment and the planning g??

mechanism, and it merely consists of one message template. The é%ﬁ

‘js mission-planner is invoked by the scheduler with a command iié
directing it to plan for the current policy in the blackboard. &;3

The mission-planner actor then retrieves the current policy from ;éi

the blackboard and passes it to the planning mechanism. Once the Eéﬁ

planner has finished 1{ts task, it then stores the results in the i

blackboard under the agenda attribute. Control is them returned

2 to the scheduler and processing of the agenda begins in the plan

projection phase.

{' The Sensor Processors. The sensor processors are shown in

Figure 6 as three actors which interact with the scheduler,

\
. e s - -
Jr Lo e AN A
£t . . . Lt .
g B . AP PN
R T .,
PRI P S AT

A

£
.

motor, and blackboard. The sensors modelled are: a gyro-compass,

» LS
’ et
)
s

[hd A AV S
SN

three sonars, and an optical shaft encoder.

(4

» e
R
PN
.

A :'u ..t ..: ..:_. s - -:,. . .',..; :. M ; :. AT N R D R e T T e T .\‘:.\'_. ':...:‘. I O

...............

SCHEDULER

GYIRO ENCODER SONARS

MOTOR BLACKBOARD

Figure 6. Communication Among Sensor Actors.

The gyro actor provides the vehicle with heading information
which it stores in the blackboard for use by other routines in
the system. The sonars provide object detection and ranging
information for use by an object avoidance algorithm. Currently,
the sonar information is not used in the program; however, future
upgrades of the program involving a more elaborate world model
description will make use of this information. Finally, the
optical shaft encoder provides distance travelled information for
use in computing the current coordinates of the vehicle,

The actors write to the blackboard by first i{ssuing a re-
quest to the scheduler for access to the bus, When access is

given, the actor writes to the blackboard and then notifies the

scheduler when it is done. Each remaining actor repeats the

process until all sensor actors have written to the blackboard,
When this operation is completed, the scheduler then regains
control of the bus and invokes other actors to process the new
information.

The Blackboard. The blackboard, shown in Figure 7, is a

collection of actors which simulates a partitioned shared common
memory allowing the main processor actors access to vital infor-
mation. The blackboard contains time varying and static data
that allows the main processor actors to monitor the state of the
vehicle while it is in motion or stationary. This techanique
reduces the need for the main processor actors to directly query
separate sensor processors for their information, thus reducing
circuit complexity by using one clearinghouse for information.

(é} The blackboard implemented contains the minimal amounf of infor-
mation necessary to allow the vehicle to navigate through its
environment. Subsequent upgrades of this system will incorporate
the planning knowledge in the blackboard, but for the present
implementation only data useful for navigation and execution
monitoring is contained in the blackboard. However, a first step
has been taken in this direction with the agenda and plan policy
partitions.

The first partition in the blackboard hierarchy 1is the
agenda actor. The agenda actor has an agenda-list attribute that
contains a series of messages generated by the mission planner.
The agenda-list functions in much the same fashion as a stack

with messages being executed and then deleted from the top of the

R stack. The agenda-list is added to the blackboard by the mission e

51

e N A e e A A S A A S N i S A AL S S el Ul e M M A A sl e R A e A A i e e e N b a

.......................

AGENDA

POLICIES

TASK~ERROR

SUSPEND~STATE

CURRENT-STATE

GYRO~STATE

SONAR-STATE

t!- ENCODER~STATE

ROUTE

Dl
e NN

oyt

et
e}
S v,y

4085

Figure 7. Blackboard Partitioms.

planner and is read from the black'.ard by the scheduler., This
technique is similar to the one used in the Hayes-Roth (8) oppor-
tunistic planning model with the messages representing

knowledge specialists or actors most appropriate to perform some

task.

Another similarity to the Hayes-Roth model 1is seen in the ;ﬁf

.C..'.'.l’l.

policy partition. This partition stores information concerning
desirable attributes of a plan., The scheduler formulates its
policy based on external inputs from a supervisor, or based on
current conditions in the vehicle”s environment. The scheduler
then stores this policy in the blackboard and invokes the mission
planner actor. The mission planner then tries to formulate a
plan based on the current policy in the blackboard. Future
upgrades of the system would incorporate the mission planner”s
knowledge base about polices in this partition.

The task-error partition contains information concerning
tasks or actions that have not succeeded, So for example, if
during plan projection the operating system discovers that a
certain item crucial to the outcome of a plan 1s not available, a
pointer to the failed planned would be stored in this partition.
Thus, the scheduler could then access this partition and use the
information while formulating a new plan policy.

The suspend-state partition contains information about the
vehicle”s last location prior to suspending a task. Therefore,
1f there 1s a need to stop in the middle of a task and start a
new task, the vehicle can resume the old task at the point at
which it left off upon completion of the new task. The suspend-
state actor only need contain information about the location
since the mission planner can direct the scheduler on how to
recover any other information it may need.

The i1dea of suspending action and taking up a new task was
once again influenced by the Hayes-Roth model of opportunistic
planning in which a subject might discover an opportunity to

perform a more important task while in the act of performing a

NEL 4 BRI

R R R A S AR,
W, PP RPN N PP AT N AP

AT S 4

separate task. Thus, the vehicle might "realize"” an opportunity
to throw a switch that is near its current location, and hence
accomplish a task that is not related to the plan in progress. An
example such as this requires a much more sophisticated world
model then the one implemented here, but it helps clarify the
reasoning behind the partition.

The current-state actor stores informationm on the current
condition of the vehicle such as its present location and avail-
able fuei. The present location of the vehicle is stored in x
and y coordinate values under the attribute "coordinates,” and
the location of the vehicle 13 stored under the attribute "loca-
tion”". The amount of available fuel on the vehicle is stored
under the attribute "resources,” and it is updated each time the
motor actor is issued a move command. The gyro-state, sonar-
state, and encoder—-state actors are locations where the
corresponding sensor actors store their readings. Finally, the
route actor 1s used to store data on the planned route of the
vehicle. The planned route is stored as an A-list with each
member of the 1ist correspounding to a segment of the overall
route. The planned route was stored in this manner to facilitate
upgrade of the system to include objects in the environment.
Since the objects would be used as turning points, each route
segment indicates a portion of the path where an object is
expected at the end of the segment. Also included as an attri-
bute field of the route actor is the goal~state. The goal-state
is the end point of the planned route and is provided separately

in the event the planned route is altered.

54

o

v "V,
o)

e
e

’ i
LR AR S
)

- .
" e

s
)

'3

P
Ny YA

3

T' Ty

~

X Fr e
i "‘ff'sl"{."
AL,

o

O
« ¢ 7Y

e ’v'. v'. '|' vl . :" . o |.- ',‘ v,.
* i . L)
| SRR LA LR A RO
Lo v L8 'r! PRI I A

The World Model

The world model implemented in the program was sufficient to
demonstrate the concept of an operating system and mission plan-
ning mechanism working in conjunction. The vehicle”s environ-

' ment, shown in Figure 8, is modelled in a cartesian coordinate
! plane with eight objects identified by their x and y values. No

attempt was made to model the objects in space, instead they are

Just considered points in the plane. A route between two objects

is broken down into segments of unity distance and stored in an

association 1list (A-1list) with information on the route segment

number, starting coordinates of the segment, length of the seg-

ment, and the heading. The format in a Lisp counstruct 1is as

follows:

(route segment ((coordinates) length heading))

For example, a route between the base and the workbench might

follow the coordinates: (0 0), (0 1), (0 2), (1 2), and (2 2).

This route would be represented in an A-list as follows:

(setq *base~to-workbench#*
“((0 ((0 0) 1 90)) (1 ((0 1) 1 90))
(2 ((0 2) 1 0)) (3 ((12)10))))

Route segment zero is indicated by the first number followed by

its starting coordinates, length of the vector, and heading. The

route described by the above construct is depicted in Figure 9.

As mentioned earlier, an environment containing n objects

would require n(n-1) route descriptions to handle all

..............................
T AT AP D - . " DY R g) LA S TR S N L R R R A R S et T
S E e KN afe s, R

. . e CRNDRIEN . . BTSN sttt e,
..... * " . * - - - - - - - -

:
»
B
)

] w8 _mowy — ., . -
AR SSAACAALRE - AU

o
S
.

TN

L

= ", ". .K T

N Y A

6
Y Alrcraft

5 X
¢ Filling
o 4 Stations
o Sensors 1 and 2
r 3 X X X
d Workbench
i 2 X
n Supply Robot
a 1 X Room X Refueling
t BASE Station
e 0 X

0 1 2 3 4 5 6 7 8 9

X-coordinate

Figure 8. World Model of Autonomous Vehicle”s Environment.

y
coordinate Workbench

2 \ — X

o

0 Base

0 1 2 .
x=-coordinate

v
’
o

.

e Figure 9., Base to Workbench Route.

AT T e T T Lt et a ettt N
L P T = TS S

I R R -
EVRES, NPT PRI S S,

A A ST A Jace o i o B A

possibilities for this type of explicit encoding. Thus, fifty-
six routes would need to be stored in the database for this world
model in order to provide access to all objects from any one
object., However, only a small subset of these possibilities was
selected in order to demonstrate carrying out four tasks. The

routes encoded in the database are:

1. Base to workbench

2. Base to filling station

3. Workbench to aircraft

4., Alrcraft to workbench

5. Workbench to fi1lling station

6. Filling station to filling station 2

7. Filling station to robot refueling station
8. Robot refueling station to filling station
9. Workbench to sensors
10. Sensors to supply room
11. Supply room to workbeach
12, Sensors to base

13. Alircraft to base

The routes were sufficient to demonstrate executing a series of
plans and returning to the base location. Furthermore, an object
map function provided the operating system with the ability to
determine {ts current location based on the present x and y
coordinate values. So, for example if the present x and y coor-
dinates were 2,0 and 2,0, then the object map function would

return the value "workbench”, In this manner, a literal value as

57

,,_
o e N
e

>

ORI
s N Ay 44, .
e

I'-.'.’m
’
L2 I I

R MR G Ml £ N ERC At A a4 Sl BN At 4ing 1y whe . fonut s 4t

well as a numeric value characterizes the description of the

Vo vehicle”s current location. This method enables the formulation
of message patterns to the route actor that are easier for the
programmer to understand, and hence they increase the

understandability of the ROSS code.

» .
'v
X
L1

- -; L

K AL

", . A

DRSS

AR Y

AR

NS

IR ORY

u*&' -~

58

T e, et At L e L R P Pt B SO TR o S - . W AN, s
AR R e e P Tt e P T N S R S P W R LI Y SRR I BN L) - “ .
B A A O I T I A T R S S S S S I SO SN L NN T

V. Planning System Design

Introduction

The top-down approach in problem solving has long been in
favor in the engineering and computer sciencé disciplines. For
any complicated problem domain, the approach makes the problem
more tractable by decomposing it into smaller subproblems.
However, many times it is more beneficial to combine a bottom-up
with a top~down approach in the problem solving process. By
considering lower-level details in the design process, faulty
reasoning or overly optimistic requirements can be eliminated
early in the planning phase. Thus, a requirement to design a
computational device with a certain clock speed might be relaxed
after consideration of the available chip technology. Indeed, in
many instances this top-down and bottom-up approach is an itera-
tive process that may be repeated many times throughout the
project”s 1l1ife cycle.

As discussed in Chapter III, humans use this method regular-
ly inplanning for a day”s activities. They are flexible in that
they can plan at a high level of abstraction while considering
lower level details. Simulating this method in software {is
difficult at best, but it is crucial to providing an autonomous
vehicle with the capability to work in a dynamic environment.

Strictly adhering to the hierarchical planning approach discussed

in Chapter III may lead to a very efficient plan; however, it may

A aA sl Gl ol ok g Sal tal fe ik Sl bl ol d AAE I B Mg Al SN (ol gl S BB 506 Tmih RS el o A ir- o A

i

v .
]
‘s

O il R

A
A

.P‘I

(4

* Yt
e N
[r'_-.'

~
L

- YT,
l'.'.

RO

,fn‘e

. '.'T""‘- LI
LIRS LY e T T

ar
-

DO% e

v

s

2 l"

PR A

4,45 4 1t s RS

Y
XA A

el
4

.......

- e v s e N a R .~ - - - - T -7 a - - . LA gl gt SR 'S e ek g

also lead to repeated backtracking from the implementation level.
The vehicle may have decided to construct a plan that involves
using a particular object only to discover late in the planning
phase that object is unavailable. Thus, it has to backtrack to
the point at which 1t made that decision and replan with a new
object. It can be argued, however, that a good hierarchical
planner would not even consider deciding to use a particular
object until it had formulated a very general plan. This is
true; however, like the human planner, knowledge of lower level
details can help reduce the planning time. Thus, the vehicle may
be trying to formulate a plan to refuel an aircraft only to f£ind
there is no more fuel or all the nozzles are in use, Its
knowledge of the state of the world model can be used in
formulating the hierarchical plan.

The planning system described in this Chapter incorporates
these concepts. It forgulates plans using a hierarchy of repre-
sentations combined with the detailed knowledge of the state of
the world. Thus, the planning process would cease early on if no
fuel was avalilable, and instead, efforts would go into obtaining
more fuel before planning for the original task resumes.

So far, attention has been focused on the higher levels in
the hierarchy of the planning process and little mention has been
given to the lower levels. 1In many cases, these lower level
details are actions that occur frequently {n a variety of
different tasks. A vehicle may be required to use its arm in
refueling an aircraft as well as in repairing the aircraft.
Should it have to plan each time it is required to move its arm,

or can this action be pre-planned and available at all times?

Humans learn to walk at an early age and thereafter never have to
give conscious consideration to the act again. It would be an
incredible burden 1f a person had to plan his motions each time

he had to walk. Likewise, an autonomous vehicle would be

ety O e

needlessly burdened with the task of planning each time it had to
use its arm, Instead, these plans can be formulated in advance
; and stored in a database where they are available when needed.
' This type of knowledge structure is known as a script, and it 1is
useful in describing common sequences of events (13:203).
Moreover, it has the additional advantage of being declarative in
; nature: the knowledge is explicit and need only be stored once.
This Iis in agreement with the knowledge structure adopted for the
more general plaunning and meta~planning rules. The knowledge
(é structure is explicitly encoded as a static collection of facts
that can be used both in understanding and planning.

There are several declarative mechanisms for representing
knowledge and each have an advantage in a particular domain. In
Wilensky”s work on meta-planuning, he was concerned with the

- domain of natural language text understanding. The influence of

. his work on this thesis has led to the adoption of a common
knowledge representation, Furthermore, the choice of representa-
tion Wilensky used provides a useful structure for any natural
language interface with an autonomous vehicle and a human super-

visor.

| .'.. e, .'-.’.*

Conceptual Dependency gﬁ

T A conceptual dependency (CD) structure represents relation- RO

ships among the components of an action., Conceptual dependency
theory arose from the need to understand the meaning of sentences
in natural language. The representation facilitates drawing
inferences from the sentences by showing the relationships among
the different components of the sentence, Furthermore, it is
independent of the language in which the sentences were
originally stated (13:222)., Thus, two different people may
describe an event using different words, but the CD representa-
tion may be the same. A CD represents the event underlying the
sentences rather than representing the sentences themselves

(14:13).

Whether the event is a physical or mental event, CD uses a

simple structure to represent the core of an event. Every event

represented in a CD structure has an actor, an action performed
by the actor, an object that the action is performed upon, and a
direction in which the action is oriented. Describing the rela-
tionships among these components is a set of primitive actions.
Schank (14:17-25) describes eleven such primitive actions used in
natural language understanding; however, this thesis focuses on a

very small subset. Specifically, we are interested in the primi-

tive acts move and grasp. These two acts are used repeatedly by

P & . n'l' " -l
PR J ', [
R . .

, A

et

the autonomous vehicle in the aircraft flightline domain. For

.‘-\.

1-:-2-:i

example, a CD representation for the statement "The robot went to o
[

1

the aircraft” has the following components: ;?v
o

actor: robot L

[-'_

action: move ETE

object: robot f{

62 Vo

AT SERERS NP IR PP PN .J':-'.'j’;

Y H A W N R e N A S e L N TR akTe l e S UM e L8R M My Rl H At e stan T ¥y g ity . e

direction: to alrcraft
from current location

These four components adequately convey the meaning of the
sentence, and they are in a form that suggests a software
representation. Each component consists of a pair of attributes:
a role attribute, and a filler. Thus, in the previous example
the role attribute i{s "actor” and its filler is "robot", This
construct was used in the planning system to represent the
vehicles meta-planning, and general planning knowledge. However,
much more freedom was taken in the use of primitive actions,

Schank describes a canonical method for using primitive acts
in constructing CI”s for natural language understanding. Strict
adherence to these methods was not followed here because they
tended to detract from the easy understanding of the knowledge
rule base. Instead, great freedom was taken with CD theory in an
effort to construct planning rules in a format that was easy for
the reader to understand, while still maintaining a format that
would allow future modifications to conform to the CD format
described by Schank.

As mentioned earlier, the construct used was that of a role
attribute and filler attribute. This role~pair comstruct is
prefaced by a predicate which describes the event, The format {is

then:
(<predicate> <role-pair> <role-pair> ...)

Furthermore, these constructs can be nested so that the filler
attribute can be a predicate~-role-pair construct. For example,

given the following sentence:

63

Ayt

»

»
¥

F oo

.' '
. S
' vt e T e
' v 2 e

&4 PO

. e
()

P

W
N T
PP

."I‘i‘ ;

o 1,00
AR
LI N ’,
AL DA
I R

[} "
s
s
o

v...
. .
' .

Sy The robot should use its move-plan to
get from the workbench to the aircraft

A possible CD representation could be:

(move-plan (actor robot)
(objective
(prox (from workbench)
(to atircraft))))

The predicate here is "move-plan® which describes the subsequent
event In the construct. The first role-pair is "actor robot”
which tells us who is to do the event. The second role-pair is
actually a nested role-pair, The role 1is "objective” which tells
us this is what the robot intends to do, and its filler is
another predicate-role-pair. The predicate here is "prox™ which

(! describes the subsequent role-pairs.

Hence, we can say the robot”s objective is to place itself

in the proximity of the aircraft by using its move-plan from the
!i workbench, Schank, on the other hand, would represent this
» sentence in a more cryptic format that requires a deeper

knowledge of CD theory in order to understand., The choice of

predicates and role-pairs used in this thesis was based on the
desire to allow the reader to immediately understand the rule

base without requiring him to digress into a study of CD theory.

AN R S
. 1 e
AN .

o
toal atdl

.’
. b
]

MY Tt e e e
v]’l',l. '.
PRI

q

Therefore, predicates such as "accomplish” and "do" are [
frequently used in the rule base, }ﬁf
R

The predicates used in the rule base also describe the type N

of rule, as well as the event itself, The predicate "action” Pt 3
signifies that the planning system is to formulate a plan to fﬁ%
64 P

o

o e N T

[N

...

accomplish this action. In this manner, the planning system can
distinguish between the tasks it is to plan for and the plans for
the task, So, {f we wanted to give an autonomous vehicle the
task of refueling an aircraft, we might formulate the task as
follows:
(action (actor robot)
(objective
(refuel (object aircraft-1l)
(with nozzle-1))))

Here we are telling the robot to have the objective of refueling
aircraft-1 with nozzle-1. The planning system can then proceed
with searching 1ts knowledge base to construct a plan for this
task.

There are other predicates that signify the type of rule,
but these predicates need to be discussed in the context of the
planning system. Therefore, they will be discussed in the sec-
tion on program structure and briefly in the next section as we
look at a primitive implementation of Wilensky”s PAM program
which served as a foundation for the planning system developed

here.

Micro-PAM

Micro-PAM 1is a simple program that captures the essential
flavor of Wilensky”s PAM program (14:180; 15). The program is a
story understander that uses knowledge about the planning process
in order to explain a story. The rules it uses are declarative
patterns that encode facts about how goals may give rise to

plans., The program processes a story a sentence at a time making

65

O R

...............
.
-

inferences about the sentences by using its rule base. The

inferences are retained and said to be predicted when some occur-
rence in the story logically follows from a previous occurrence,

. As an example, consider the following two line story:
- John was hungry. John went to a restaurant.

Micro-PAM begins the understanding process by making inferences
"f about the first sentence. In its knowledge base it may have the
rule that says someone who i3 hungry may have the goal of
obtaining food; however, this goal is not predicted since we have
only processed the first sentence we cannot conclude that this is
John“s goal. Therefore, we discard this inference and place the
first sentence under the categorxy of theme. In other words,
John”s hunger is now the theme of this story, and we can relate
(! any future {inferences to this theme.
When the second sentence is processed, Micro-PAM may have
in 1ts rule base a rule that states anyone who goes to a
restaurant may have the goal of obtaining food. This inference
is still not predicted since we need to know that being hungry is
instrumental to having the goal of obtaining food. Micro-PAN,
however, may have in its rule base the rule that says a subgoal
of obtaining food is to be hungry. 1Indeed, this subgoal is
predicted by the theme of the story: John was hungry. Hence,
these inferences have been predicted, and we can conclude that
John”’s reason for going to the restaurant was to obtaim food.
It is this mechanism of relating themes to inferemces that

- . is of interest iere., The domains are quite different, but the

mechanism i{s useful {f we draw parallels between understanding a

[.

A

N -

-

A v
REF A IS

.
A

L
”

v
K @ sk
N ‘ L] ’ . A + .

’-‘l"c.:'-'

Sty by Uy A Ky 4y
RIS A

Sl W W e, P W O, LV, T TR N e S R T T e N T Iy Uw I T e)
N

story and planning for a task. In story understanding, we are
trying to relate known themes to inferences, and we do not con-
clude any inferences until we can make such a relation., Like-
wise, in planning for some given task, we could make inferences
about what needs to be accomplished, but we cannot conclude these
inferences until there is a relation between the inferences and
the statement of the task. Thus, the task itself becomes the
theme of the planning process, and we try to relate inferences
made to this theme. A success means we have not only comnstructed
a plan, but we have understood the task. Using the form of
conceptual dependency discussed previously, we might want to
construct a plan for the following task:
(action (actor robot)
(objective
(refuel (object aircraft~1l)
(with nozzle-1))))
This task then becomes the overall theme for our planning
process, and inferences are made based om this theme., So, an
inference might be made that says a refuel-plan is called for 1in
this situation. This could be said to be related to the theme of
refueling an aircraft, but we are trying to relate an inference
to the more abstract notion of doing an action with something, in
this case nozzle-1l. Therefore, another inference could be made:
(move-plan (actor robot)
(objective
(prox (from filling-station)

(to aircraft)
(with nozzle-1))))

This inference says a move-plan should be used to get the robot

67

..,.
. :’v"x
AN SR,

L

4
L4

.
"
L)

STAIRS B et
-, ‘:.'I' .' i’
M

»
]
rcal s

N T T T T R R O s

from the filling~station to the aircraft with nozzle-l. Again,

= we could say this inference relates to the theme, and indeed it

P TN Xy RS

does, except that the robot does not yet have a way to get

nozzle~l. For that matter, it does not even have a way to get to

the filling-station., We cannot say that this event is predicted

v s, v -
. AR
A N

by the theme because of the current state of the robot”s world

5 model; it needs to get to the workbench before it can get nozzle-

VTeTE Y v
PN

= 1. Therefore, it continues making inferences as long as it has
" appropriate rules in its knowledge base. The next inference

might be:

(grasp-plan (actor robot)
~(object nozzle-1)
(location filling-station)
The robot now has nozzle-1l, but there is still an inconsistency
in its environment since its current location 1s different from
the filling-station. The next inference would remedy this
inconsistency:
(move-plan (actor robot)
(objective
(prox (to filling-station)
(from current~location)
(with nothing))))
The key elements of this inference are that it moves the robot
from i{its current location to the filling-station, and it requires
that the robot have nothing in its grasp. This inference would
be consistent with its current state since the very general term

current-location is used, and the robot is not currently holding

anything., Therefore, we can say that this Iinference was

................................
...........................

68 4

e Sha SACMAS) wi) A ach A by el e LG SEE UL ach s A A

3 3 . - ¥
LI 2 e S R N M a JEN “®a T avh - " .t T e T T

predicted, and hence all the inferences were predicted. 1If the

e ViR ¢ S
'
|

Cfb robot had run out of matching rules in its knowledge base before

making a prediction, we could say that the robot did not know how

'i' .l‘ n ." -" ." -

to perform this task.

4

In general, an inference is predicted if it involves an

YA

action that is consistent with the vehicle’s world model and the

description of the task. Therefore, we are not really using the

task itself to predict the inferences, but instead we are using a

combination of the task and the vehicle”s current state. The

.

task Is used immediately to infer the high-level solution of
using the refuel-plan, whereupon the task becomes the overall
theme to judge the validity of the intervening steps. This is in
contrast to Micro-PAM which only allows a story’s sentence to
become a theme when it can no longer make any more inferences.
There is an advantage to this particular approach when one
considers the problem of an autonomous vehicle attempting to
understand the actions of another autonomous vehicle. By obser-
ving the actions of the second vehicle, the first vehicle can
search its knowledge base to infer the second vehicle”s task. 1If
one vehicle has observed another moving to the filling station
with nothing in its grasp, then the first vehicle can say this
action would be predicted from an order to refuel an aircraft.
With this assumption, the first vehicle can formulate an entire
plan the second vehicle might follow and try to combine the
actions of the two vehicles if they have movements in common., An
attempt to combine plans with another vehicle might arise if one
vehicle has some task that it is unable to accomplish alone,

Combining plans is an acceptable strategy that humans use

69

......
.............................
LIRS R T A L SR L PR AP S LS I

-
o
a

.
T,
'
.
<3
%

»

?

”

.
-

1]

$

e
e
]

Lt SR
[

(]

T

PEal 1

e
~ el
‘: . regularly, and it is a form of meta-planning that Wilensky refers i:j'
SR s
2 o to as goal concordance, or a positive interaction between the %V'

goals of different planners (16:220). Obviously, this type of

v,y

l" l" P

»"
-

c

planning would require knowledge about the tasks of other

W
l..
)

IS0

vehicles in the environment and knowledge about how to plan for
them. The structure of the rules in Micro-PAM“s knowledge base, X
however, allows separate databases to be stored.

Micro-PAM“s rules are grouped under four categories: e

1. Instantiation ﬁ?

vV

.
,

2. Planfor

VY

P
u 3. Subgoal _

v
.l'l

4. Initiate

AR
1]
AL

PR %
DA .
¢ 5§ v 2

i ‘-. An instantiation relates events to plans they may be a part of, s
| Therefore, an instantiation rule would relate an order to refuel
E an aircraft to the vehicle”s refuel-plan. A planfor, on the

ii other hand, relates plans to goals that might be applicable. So,
a refuel-plan might be related to the goal of moving to the }fi

- alircraft. The subgoal category would relate this goal to an jlﬂ

applicable plan, such as the vehicle”s move-plan, Finally, the ?‘

initiate category relates the themes to goals or plans that the

vehicle may infer. Hence, the initiate rules might relate a

refuel order to a plan involving moving to a filling station. o]
The rules themselves are grouped under each category as

pairs of CD structures such that the occurrence of one implies

the other. The CD structures have specific predicates and roles; rt%

however, the fillers are variable patterns. Thus, the CD struc- R

AN R Tl (o0 A A R AR LA M i S, i St A g AR A S il Al oo I A AR e e R AR AC R i SO . e b o I g it e ek g e o e

tures are very general and can be matched with an appropriate
5} instance of the CD structure. For example, a very general fornm

of the move~-plan CDmight be:

(move-plan (actor 7?x)
(objective
(prox (to ?y)
(from ?z)
(with ?w))))

v
" "—""'v-'
Tt PR R A

The variables in the CD are prefixed with a question mark which

allows the pattern matcher to replace them with specific imstan-
ces. So, ?x might be replaced with "robot" and so on.

The concept of making inferences and then trying to predict
them 1s a compoment of Micro-PAM that was retained in this imple-
mentation, Micro-PAM has several drawbacks, however, that limit
its usefulness as a planning mechanism. It has a fixed control
structure that is really not conducive to implementing the con-
cepts Wilensky discusses in his theory on meta-planning.
Moreover, none of the rules in the knowledge base are indexed, so
the program does a sequential search through the rule base until
it finds a rule that matches., Also, Micro-PAM has no way of
handling sophisticated goal relationships such as might occur
when trying to combine plans. And finally, Micro-PAM does not
really demonstrate the ability to use knowledge about the
planning process while comstructing plans, Furthermore, it has
none of the other components Wilensky proposes, such as a plan
projector and goal detector., Each of these drawbacks, however,

were addressed in this thesis effort.

.'
PR AL

T T
el e T e

gk
b,
\

Program Structure

In order to reduce the time required for Micro-PAM to search
its knowledge base, a discrimination net was used inm order to
index the rules. A discrimination net for indexing structures
containing variables was implemented using the description in
Charniak (2:162-169). The net facilitates the search through the
knowledge base by returning the structures whose index matches an
input. Thus, 1f the input is a CD that directs the vehicle to
refuel an aircraft, the discrimination net is searched using this
input to match the indexes in the net. When a match occurs, the
most appropriate structure is returned, in this case a refuel-
plan CD would be returned. Hence, the search is a best first
search as opposed to Micro-PAM“s depth first search. This type
of indexing scheme is crucial for an application that contains a
very large rule base, and indeed an autonomous vehicle would
require a very large rule base for the type of planning des. °bed
by Wilensky. Furthermore, meta-planning requires the capability
to manipulate plans by combining, deleting, or altering the
original scenarios. Therefore, some method of associating tasks
with their plans is needed in order to implement aspects of meta-
planning.

As mentioned in Chapter III, an acceptable meta-plan 1is to
combine plans, But, what happens If two plans are combined and
something occurs in the vehicle”s environment that invalidates
one of the plans? An occurrence such as this might require
removing the affected plan. Therefore, we need a method of

identifying the affected elements of the plan in the database,

rereTe—rs
R
- 4

.

BN L2
ORRA L
’ AR |
e et e i

e w .
e’

g
At

el

cr .7 "
'y ‘e 4 %
PP
P

<,

ALl

.
v om
e
i)

2

v
ot
LN I LN

cr

:'l
.

IR ok S
oo
it A

"
ie e s

s e e L . . Nt e e T e -
LI . A U e et e AN PR T

RPN ._---',. UL A R A P R ._...'.,-.-"_._._-_-,-..-..- IR
R B S, T S Wi Vol I W AP TP WAL it DL A PO W, Y U8 TSR R PR PR S FUL ST S U Nl Sl Sk W, LR N,

Charniak describes a simplified version of Doyle”s truth
maintenance system that proves adequate for this application
(2:193-201).

When plans are created, each element of the plan is stored
in a structure with three components: the plan ftself, a pointer
indicating the task that it is a component of, and a pointer to
the next element in the plan., Figure 10 shows an example of such
a structure for the task of refueling an aircraft. Thus, if two
plans have been combined, each component of the plan identifies
its parent task and the next component in the plan. If one plan
has to be deleted, common elements of the combined plans would
not be deleted since they are justified by more than one task as
shown by the pointer m003. This element of the plan is justified
by two tasks, a00l and a002, Therefore, it would not be deleted
if one of the tasks is {nvalidated., We now have a structure for
the database that allows the application of meta-planning theory.
However, the basic structure of Micro-PAM“s knowledge base needs
to be altered to separate the planning rules from the meta-
planning rules. This type of division implies that two types of
planning will occur: meta-planning and general planning. The
basic inferencing mechanism, however, can be used for both types
of planning if a common structure for the meta-planning and
general planning rules is used.

Recall that the rules were grouped in Micro-PAM under four
categories. The categories classified the type of rule contained
as elther an instantiation, planfor, subgoal, or initiate rule.
This type of classification can be used to add in another type of

rule -- a meta-planfor rule, A meta-planfor rule would relate

73

AN) o SRS

AR

o ST,

e sy
PR

DL PR

[in AT}

.

RO R N DR AR MR N 60 S e S0 e A e i LI = A M Ry 2 Pag T i iy W _m e L e e TR TR WO P S bt i i B it utn It WA R e S e b R

‘;:;
i
3

\
“

.

X

‘s

»'
»
-
R

4

a00l --=> (refuel task) a002 ---> (repair task)

m001l ---> (move-plan (a00l) (m002))

m002 ---> (grasp-plan (a001) (m003))
m003 ---~> (move-plan (a00l a002) (m004))
m004 ---> (refuel-plan (a00l1l) (m005))

m005 --~> (repair-plan (a002) nil)

Figure 10. Truth Maintenance,

policies about the plan to meta-plans for accomplishing those
policies, If the current policy governing a series of tasks was
to plan for those tasks as efficiently as possible, then a
possible meta-plan to accomplish this might be to plan each task
separately and then combine the plans. This would be represented
in the knowledge base as follows:
(meta-planfor
(accomplish (plan ?y)
(combine ?y))
(policy (planner 7x)
(objective (plan
(efficiently ?2y)))))
The predicate "accomplish” i1illustrates the freedom taken with CD

structures. This predicate is not explicitly allowed in CD

theory; however, it is more descriptive for this application and

74

.............................

was used in order to enhance the readability of the rule base,

The previous example illustrates another enhancement of the
original Micro~-PAM. The meta-plan rule tells the planner to plan
for each task and then combine the resulting plans. This implies
that the control structure of the planner is directed by the
knowledge base dependent on the prevailing plan policy. There-
fore, a different policy might involve using different components
of the planner, and indeed this does occur. The planner is
passed the current plan policy from.the operating system,
whereupon the meta-plan rule base 1is used to specify an initial
flow of control. After that, the planner is free to alter the
policy based upon its ability to plan for a particular task.

An autonomous vehicle could be given an order to plan for a
particular task such as a refuel task. The planner would begin
by initially planning for the policy in order to define the
appropriate control structure. After obtaining the ccutrol flow,
the planner begins processing the meta-plan which tells the
planner which fumnctions to use for the current policy. As in the
previous example, this might involve planning for the task and
then combining the plan with other plans. While planning for the
task, the planner may be unable to predict any of the inferences
because perhaps the vehicle”s world model is inconsistent with
the specification of the task. The task specification may have
directed the vehicle to use nozzle-1l, but the planner is unable
to locate nozzle-~1 because it may be in use. Therefore, we have

a plan failure, and it is unreasonable for the planner to

continue with the original control structure. However, an

et r s 0 v e
PR
A

............................

acceptable meta-plan for this occurrence is to alter the

e scenario. In other words, if a planner is unable to accomplish
an original task, then try changing some aspect of the specifica-
tion so that the ultimate goal is still achieved. Therefore, the
planner could alter the task specification by using nozzle-2
instead of nozzle~l. The ultimate goal of refueling the aircraft
can still be accomplished because, in this case, it 1is irrelevant
which nozzle 1s used.

The planner, however, needs to query the meta-plan knowledge
base. Therefore, it uses the original task specification to see
1f any suitable meta-plan exists. The meta-plan would specify
which functions to use in case no plan could be constructed for a

task., So a suitable meta-plan for this example might be:
- (accomplish (alternative-scenario task))

The meta-plan directs the planner to use the function
alternative-scenario with the original task. Planning can then
proceed if an alternative scenario does exist.

In the event no alternative scenario exists, the entire
o planning process for the task has failed. The planner needs to
formulate this into a policy identifying the function that failed
rather than the task. Thus, the initial policy has been altered
by the planner in an attempt to salvage the entire planning
process. The new policy might take the form:
- (policy (planner vehicle)
N (objective

(plan
(fafled "function that failed”))))

...................
- 4 [N S I I ¥ S S COR RS 20 Tt S St IR s S Sl i St

el IR g g Same S/t el Seth QUi ik St i Mot 0ol s el Bk all BB 0 4 JRAN L floy A g
n

[

)
el

s (w

.
2

N
.

‘.
L)

""."I"‘I l' T
2

oy

.
T
.

e ot
P2 T R
,l\'|"’."
4 Y

.I.

...........
..........

This policy identifies which function in the planner has failed.
Using this new policy, the planner can query the meta-plan rule
base to see 1f another control flow might salvage the planning
process. If no new control flow exists, then the planner may
just have to abandon the task and try to plan for other more
valuable tasks.

The preceeding description of the meta-plam rule base
implies the existence of functions that can formulate policies,
seek alternative scenarios, and combine plans. Each of these
functions was added to the original Micro-PAM in order to provide
the capability to accomplish meta-plans. Another function, not
previously mentioned, was added in order to provide the function
of abandoning plans., Furthermore, a sorting function was added
to provide the capability of ordering the tasks by decreasing
value.

Each plan in the rule base is given a plan value that de-
notes 1ts relative importance. A refuel-plam might have a higher
value than say a plan involving sweeping the floor. Hence, the
planner has the capability to judge the importance of each task.
Therefore, If a meta-plan calls for abandoning a task, a policy
might be spawned that directs the planner to maximize the value
of the remaining tasks. A suitable meta-plan to accomplish this
is to sort the remaining tasks by value and then plan for themn.
Once planning has been accomplished, the planner can then proceed
to the final phase ~- refining the planms,

Up until now, components of a plan have only been stated in
abstract terms such as refuel-plan, move-plan, and grasp-plan.

The planner now needs to transform these components into actions

77

PRSP

. L

o RN

f . .

t . « et .,

. PR

. S AN
e

that the operating system can understand, This phase of planning

has been termed the refinement phase, and it is accomplished by

the refine function. Each plan in the rule base has associated

with it a script, or a set of pre-defined actions for

accomplishing the plan., The scripts are in the form of ROSS

messages that can be used by the operating system to direct

actions. For example, the grasp-plan might have the following

script:

(tell arm move to location ?y)
(tell arm close hand)
(tell arm retract)

The script consists of three ROSS messages to the appropriate

actor in the operating system. Furthermore, they are in a

general format since the y variable is not specified. Therefore,

it 1s the job of the refine function to fi11 in this variable

before passing the script to the operating system. The messages

are indeed actions that would be performed no matter what the

vehicle had to grasp. The arm is first moved to some location,

‘y
»

«
'.I.'-

P o e ... - e e
. v N N oo AN
. . ' . R
.. C el e
, AU The 4y
, s ol .
.t . ’ TR

then the hand is closed, and finally the arm is retracted. The

.
Y
et

only variable in the action is the location. Moreover, it is not

necessary to tell the operating system to first check for an

N
L
P
.

’
PSSO S A

s
P
e

empty hand since this is handled by the planner at an abstract

-

level in the planning phase, The planner will not allow grasp-

-.”9 L L
H ';1“'.

Wy

Pt}

plans to occur in sequence without an intervening ungrasp-plan.

.

'

Nevertheless, the operating system does Indeed check the black~-

»”

ettt
v,

e

1
A

board to ensure no object is in the vehicle”s grasp.

q

‘alasa’a

The incorporation of scripts required that a separate rule

8
, L.
e

v - ,
» e " ..
L LR]
" R .
o’ o oSagal e

a’a 3 b

’
/7

—’l
_-M' o ®

78

a’

base be created to store the scripts. Rather than just add an
additional category, such as a script-for category, the scripts
were placed in a separate rule base which allowed the use of the
same categories but in a different context., The preceeding
script for the grasp-plan could then be stored in this rule base,
known as the refine-rules database, in the following form:
(planfor
((tell arm move location ?y)
(tell arm close hand)
(tell arm retract))
(grasp-plan (planner ?x)
(object 7y)
(location ?w)))
This rule says that a plan for a grasp-plan is the script encoded
in the rule. The refine function would have the job of finding
the coordinates of object ?y and substituting it in the script.
The decision to create a separate rule base was based upon the
possibility of allowing the planning system to manipulate the
scripts exclusively, rather than first plan at a high level of
abstraction. If only some minor deficiency exists in a script,
the planner could plan using the scripts themselves, rather than
their more abstract equivalents, This, however, is a fumnction
that was not implemented. Nevertheless, a future upgrade could
make use of the structuring of the rule base to incorporate such
a capability.
To summarize, the basic inferencing mechanism of Micro-PAM,

along with its CD structure, was used as 4 foundation for the

planning system in this thesis. Enchancements to the basic

Micro-PAM structure include the following:

.....

e e e e e a e e e e e e e e e e e
e S e el e e e T e e e s T e e e e e
) . e e e . RN .

v, PRR]
A

-

-
ot
..
.“l
Y
1 d

gy g TR
PSS
]

€ e
ol

)
£ 5

e

%)

» 1. Discrimination net to index the rules
* -ﬁ; 2. Basic truth maintenance capability

- RN

3. Meta-plan category

4. TFunctions to handle meta-planning

NI N

]
w
.

Separate rule base for scripts

6. Capability to judge value of plan
:Z 7. Flow of control specified in rule base

80 [

R ST e e At e e e c . . .o L.
o T e e e T e T - L e T C e
» S el S I T . . -

P T TR R T AT T -
CR Y -

v - . R
. g LS , e e e P S RS o [SCRNERRIELN

SR e T T N e T T e Tt e A s e e e T I . S N N A
W YR P, e N L, . . D, v Ny U Py, Sy T A A A TS "L'%L".‘L.L.A.&.-l.ilﬁ‘it,l. DO WAL WV R e

3

LR

e

VI. Integration and Testing

Introduction

Al though this thesis has been divided into operating system
design and planning system design, the two components are in
effect two planners with different philosophies. The operating
system is a planner whose entire knowledge is procedurally en-
coded in each of the actors. Therefore, adding to its knowledge
base requires adding new actors, or adding new behaviors to the
existing actors. ‘The mission planner”s knowledge base, on the
other hand, i1s more declarative in nature, Adding new planning
knowledge means adding new rules, and adding new meta-plans
simply means specifying a new control flow. .

The dichotomy becomes less evident, however, when the two
components are integrated. The output of the mission planner is
now in effect determining the control flow of the operating
system, The mission planner suggests how the operating system is
to use its actors to accomplish a task. However, it does not
fully specify the control flow because its knowledge of the
operating system is limited. Likewise, the operating system’s
knowledge of the mission planner is limited to policies it knows
the mission planner can handle. Thus, we have the interface
points for the two components. The operating system must formu-
late its commands into policies the mission planner can under-

stand, and the mission planner must formulate its commands into

81

8 wicd MARRAIRRRRIRS
R AR

oy
;',',
PAFARSEEN
et

.
A
.
L
R AR

o

ottt
L
MOV

N
‘
’

€ '-f""'
RO]

TetaT e
N
E)
»

0

. -"1{': Y

'1_1{1’
P A

=y
AL

NN

’ .

»
2
.

) s e v e e, -
. %%,

’ .. '-'v » , .
) . - .

. [y LT

‘Y N PR
: <o

. o . - .

.

N .l
I 30 2P

N
RATI)
S

)

.
A
,'I"'
s

*n
[} ‘

messages the operating system can understand. The result of the

IR integration 1llustrates the clearly defined jobs of each i
; component. E;

-~ e
': :f.:." !
. o
> Integration)
h' ot

o

2

!

The interface points have already been identified in

v v
M A
L)

I
S

¥

Chapters IV and V. The operating system communicates with the

PR
s

. mission planner through the use of the mission-~planner actor. As

oy,

mentioned in Chapter 1V, the mission~planner actor only has one

.

"’l'/'"
oe)

message template and behavior. Its sole job is to obtain the
current policy from the blackboard and to invoke the planning
function., Once planning has ended, the mission plamner actor
stores the resulting plans in the blackboard and returns control
: to the scheduler. Thus, the interface in one direction 1is
stralightforward and provides great flexibility for future up-

- grade.

- The planning system communicates with the operating system
in a 1like fashion through the use of scripts. The scripts are in

i- reality ROSS messages In CD forms, Since the operating system 2:5

i cannot understand CD structures, it needs to translate them into
the proper format, The nature of Lisp, however, allows this to
be accomplished quite easily. CD forms are just nested lists, 53{

and in order to translate them Iinto the proper format, the opera-

- ting system just needs to remove all of the internal parentheses. ;iﬁ
- Testing T
Sy Testing was done on a VAX 11/780 running under the UNIX {Qﬂ
R

: e
.-~ .-.'- .‘.‘l
»" 8 2 é.‘ ':'1
RS
" Al
b e e e e e e e e e el L L S B N A L PP P S P e "-\‘}.
........... A S

l.".“ 3 2R

by ~
B operating system, The objectives of the test were to .j
? = demonstrate: ﬁﬁﬂ
q‘ s ‘?; .:-
- 1. Planning and meta-planning EF
R
N 2. Plan projection g
ﬁ‘ 3. Goal detection Q
X gt
} Four tasks were selected to demonstrate these objectives, as well fﬂf
as the meta-planning concepts of: %ﬁ:
o 1, Combining plans F}"
3 2. Abandoning plans tﬁi
= 3. Seeking alternative scenarios e
[
{. 4, Recovering from plan failure A
The four tasks selected were stored under the global variable E;
] (e robot~task in the CD form: -
IE (setq robot-task a
- “((action (actor (vehicle (name (robot=1)))) .
- (refuel aircraft) o
(with nozzle-1)) =
o (action (actor (vehicle (name (robot=-1)))) Qe
o (repair engine) i
« (location aircraft) I
X (with engine-tools)) o
= (action (actor (vehicle (name (robot-1)))) el
(maintain work-bench) 3
(with work-bench-supplies)) S
(action (actor (vehicle (name (robot-1)))) T
(maintain sensors) L
(with sensor-supplies)))) R
. 3
_{ The first task directs the vehicle to refuel an aircraft with a)
o
- nozzle, while the second task directs the vehicle to repair the :S{
b o
engine on the same aircraft, The next two tasks are less impor- F;e
i: tant general house-keeping functions to be performed by the :i:

..' .. { ... - .- "- -I .r - - -
A

vehicle. It must ensure the work-bench has ample supplies and 1?:
the various sensors in the area are functioning properly. The ii:
vehicle”s environment is the same as in Figure 8, repeated here £
KR
I,
in Figure 11, gf.
ey
e 6 I “ -
' Y Aircraft En
: 5 X e
y_ _ c Fillin g e
[o 4 Stations
. o Sensors 1 and 2 RO
r 3 X X X (5
d Workbench : L0
i 2 X e
n Supply Robot A
a 1 X Room X Refueling el
t BASE Station e
o e 0 X T
L .
-..‘__
2 0 1) 3 3 5 3 78 9 o
. »-_'\:_]
- X-coordinate S
Figure 11, Autonomous Vehicle”“s Environment. ﬁ{?
y The following is an edited transcript of the test run. Qj:
Comments have been included to highlight the important concepts, “mj
- '_—ﬂ
A complete transcript of the test run can be found in the)

N Appendix.

. . P A L e N R LR L N T

EEEE=IEEXEERRTED ROSS SRS ERSESSATETERMEX ._'

VERSION: Wed Jan 19 11:26:26 1983 e

|~‘-.~"4

P

The ROSS environment has been invoked and the user now asks 3$ﬁ

.:...:\‘

the scheduler actor to rum a simulation for a maximum of 300 time %EQ
.._.:_(,

pOSL,

steps.

=> (ask scheduler go 300)
% ROBOT SIMULATION *%%
Current Coordinates: (0.0 0.0)

Current Location: base
Current Resources: 100

After printing a banner showing its current state, the

scheduler invokes the planner actor and tells it to plam. The

planner signals that it is ready to plan for the curremnt policy.

Ready to plan

Looking for a meta-plan for Policy:

(policy (planmner robot)
(objective (plan (efficiently robot-task))))

Possible explanation assuming

(accomplish (clear-globals all)
(process-cds robot-task) R
(combine-plans *task-plans¥*) e
(process-cds *return~action%) L
(refine nil))

The planner has arrived at a meta-plan to accomplish the

planning policy. First it is to clear any global variables, plan

85 Al

.......... T U L T SR St R S SRR S S Y
o " e . . 0 ats e e e LNy N e Lt

e B 2 A A i s S vage -_—|—z~1\1-_—q-,:v_ ERA A AR i il RamARe i et Al AU AE A A Sur sl RS A S e A e 4t~ i W e T WM g » Sa Vot Tl Va “WWTVEY

.....................

]

.
LI

JTWE’

1%

for each task separately, combine the plans, plan a return &‘

- v
e action, and finally refine the plans Iinto scripts. e
. Xy
W

-]

P ol 4

T

A meta-plan for this policy is:

((clear-globals all) (process-cds robot-task)
(combine-plans *task-plans¥)
(process-cds *return-action¥*)
(refine nil))

- qre-
]

,...‘..
SN

. 2 2 k4
?: PR

oy
"

S i VAT

e

It now plans for the first task. -

el

Plananing

- (action (actor (vehicle (name (robot-1))))
. (refuel aircraft)
(with nozzle-1))

t! Event not predicted if
Possible explanation assuming
(refuel-plan (planner (vehicle (name (robot-1)))) -
(object aircraft) o
(with nozzle-1)) L'
- Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (mame (robot-1))))

(location aircraft)
(with nozzle-1))))

. Event not predicted -~
. - Possible explanation assuming

- (move-plan (planner (vehicle (name (robot-1))))
(from (prox (location nil)))

S (to (prox (location aircraft)))

.- . (with nozzle-1))

A B AU

.
s a2

P it A e e A i - 50 - gl e o)l g B et

No usable inferences from

o,
R (refuel~plan (planner (vehicle (name (robot-1))))
(object aircraft)

(with nozzle-1))
No usable inferences from
(action (actor (vehicle (name (robot-1))))

(refuel aircraft)
(with nozzle-1))

No inference chain found--

The planner was unable to find a plan for the first action
because nozzle-1 was unavailable. Therefore, it seeks a meta-

plan for the task.

C! Seeking Meta-Plan for:

(action (actor (vehicle (name (robot-1))))
(refuel aircraft)
(with nozzle-1))

Possible explanation assuming

(accomplish
(alternative-scenario
(action (actor (vehicle (name (robot~1))))
(refuel aircraft)
(with nozzle-~1))))

Trying Alternative Scenario
Possible explanation assuming

» (accomplish

= (justify~alternative

; (action (actor (vehicle {(name (robot~1))))
(refuel aircraft)
(with nozzle~2))))

.....
......

AD-A163 956 AUTONONOUS VEHICLE IIISSION PLRNNIIG USING Al
RRTIFICIHL INTELLIGENCE) TE.. (U) RIR FORCE INST OF
MRIGHT-PATTERSON AFB OH SCHOOL
UNCLASSIFIED S E STOCKBRXDGE DEC 85 ﬁFlT/GE/ENG/SSD-45 "F/6 674

|

,

&

’

< I‘Jfo.l'(.

a
-

-~
-

-
-

<
>
Ca
Y

The planner has arrived at the meta~plan of trying an
alternative scenario for the task. An alternative scenario for
this particular task is to try using a different nozzle to

accomplish the task,

Planning
(action (actor (vehicle (name (robot-1))))
(refuel aircraft)
(with nozzle=2))
Event not predicted
Possible explanation assuming
(refuel-plan (planner (vehicle (name (robot-1))))
(object aircraft)
(with nozzle-2))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location aircraft)
(with nozzle=2))))
Event not predicted
Possible explanation assuming
(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle=-2))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(grasp (object nozzle-2)
(location filling-station))))

Event not predicted

88

Possible explanation assuming
(grasp-plan (planner (vehicle (name (robot-1))))

(object nozzle-2)
(location filling-station))

Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))

(location filling-station)
(with nil))))

Event not predicted

Possible explanation assuming

(move~plan (planner (vehicle (name (robot-1))))
(from (prox (location curreant-location)))

(to (prox (location filling-station)))
(with nil))

Event predicted from
(action (actor (vehicle (name {(robot=-1))))
(refuel aircraft)

(with nozzle-=2))

Adding inference chain to data brse

The planner has arrived at a plan for the first task and
then proceeds to plan for the second task of repairing the

aircraft”“s engine.

Planning

(action (actor (vehicle (name (robot=1))))
(repair engine)
(location aircraft)
(with engine-tools))

Event not predicted

AL I R D A S A AL i a8 Rl R s L R ? ALY PR gl L3 B7 RN AR o ’ = s

- -‘.5
. Possible explanation assuming ;:}
".‘:\ ¢
X e (repair-engine-plan (planner (vehicle (name (robot-1)))) 2}:
- (object engine) N
(location aircraft)

. (with engine-tools)) Ak

: . o
3 : o
RN

" (3

-: N ';;.
< Intervening planning steps have been left out, but the :jﬁ
N planner successfully arrives at a plan for the second task. &?j
3 RS

S
.

. T
. Event predicted from ot
. .-,.‘
(action (actor (vehicle (name (robot=-1)))) i

(repair engine) Y

(location aircraft) RN

(with engine-tools)) R

Lo

Adding inference chain to data base

i 'V,

PN

hYLY L
)
4

2

The planner now plans for the third task of maintaining the

Ts W
.

i

h)

L4

work-bench,

.

- Planning i~;
. (action (actor (vehicle (name (robot-1l)))) T
(maintain work~-bench) S

(with work-bench-supplies))
- Event not predicted
Possible explanation assuming

o (replenish-work-bench-plan

" (planner (vehicle (name (robot-1)))) :
(maintain work-bench) fié
(with work-bench-supplies)) —

n.. ’. . K .~-

90 RS

¥ Y R TRt Ty

Intervening planning steps have once again been left out, but

the planner successfully plans for the third task.

Event predicted from

(action (actor (vehicle (name {(robot~1))))
(maintain work~bench)
(with work-bench-supplies))

Adding inference chain to data base

The planner now plans for the fourth and final task of

maintaining the sensors in the work area.

Planning

(action (actor (vehicle (name {(robot-1))))
(maintain sensors)
(with sensor-supplies))

Event not predicted
Possible explanation assuming

(sensor-repair-plan (planner (vehicle (name (robot-1))))
(maintain sensors)
(with sensor-supplies))

.
PSS
.

oo
g1
Event predicted from ST
(action (actor (vehicle (mame (robot-1)))) fi?
(maintain sensors) e)

with sensor-supplies
(PP)) -
Adding inference chain to data base e
.:‘:.:‘
:.:,:.r

91 '
P

The planner is now finished with each task and proceeds to
K the task of combining the plans to accomplish the policy of

creating an efficient plan.

N Combining Plans

The planner has finished combining plans and now sorts the

plans so that the most important plans are done first.

Sorting Plans by value

RS
.-’ The planner now plans for a return action., Once the vehicle _.
\\:.
has accomplished all of its tasks, it will need some way to get 3:ﬁ
. T
back to its home base; therfore, the planner anticipates this and Eﬁi
- plans appropriately. -
3 Planning R
= (action (actor (vehicle (name (robot-1))))
. (objective (return (location base)))) <
= Possible explanation assuming R
i (move-plan (planner (vehicle (name (robot-1)))) Eﬁj
- (from (prox (location current-location))) L
b (to (prox (location base))) hASS
’ (with nil)) N
e (L8
i Event predicted from
(action (actor (vehicle (name (robot=1)))) e

.

.ty
S,
ek aiinl

92

N 2.2 NUREES
A

S EEE S e A A -

N
E

-
(objective (return (location base)))) F¢

RO Adding inference chain to data base ‘

.
-Lv
- "

The planner now refines the plans into scripts that the N

operating system can understand.

Refining the Plans

b

Refining

i dad
4

'l

(move-plan (planner (vehicle (mame (robot-1)))) j%:
(from (prox (location current-location))) SN
(to (prox (location filling-station))) bl
(with nil)) ih:
Refining Vi
(grasp~plan (planner (vehicle (name (robot-1)))) ;2{
(object nozzle-2) AN
Q! (location filling-station)) S
Refining .
(move-plan (planner (vehicle (name (robot-1)))) ffa
(from (prox (locatlion filling-station))) e
(to (prox (location aircraft))) y
(with nozzle-2)) —e
' 20
. - -_:-".
Once the planner has completed the refinement phase, {t ;{}
prints the database., A portion of the database is shown here as e
composed of scripts in the form of ROSS messages. Notice that :
each script is composed of a message, a pointer to {its parent :g%
task, and a pointer to its subsequent task. The header ;ﬁ
:ﬁh "executive"” in each message tells the operating system to use the :”ﬁ

93 ,

function executive to process the message., In this manner, the

initial control flow of the operating system is specified.

~ e .
$

The database now contains:

(((executive (tell (route-planner))
(start current-location)
(goal filling-station)) (a00005)
m00032)

((executive (tell (scheduler))
- (move route)) (a00005)
- nil)
I ({executive (tell (sensor))
(locate nozzle-2)) (a00005)
m00034)

The planning phase is now complete and control is returned
to the operating system for the plan projection phase. The
operating system then takes the script database and begins
processing the scripts onme at a time. The first script is a

command to move to the filling-station.

Move Robot
Start Location: Dbase
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
kk Time step: 1 #*&k&*
Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

924

= .

NS

N YA S
LA

s

A
RXAAN
v '-"u el

wela
A

o h e

s s EEE—- . -
4
-

Y
o
' P_ »
. . Robot moves forward: 0.5 meters h;
. - f_.-t"
\ sl e
l Encoder updates memory
S Sonar updates memory R
. Gyro updates memory 3:\ Y
| -
- 15
- *k** Time Step: 2 *¥*k% ‘Jb
| ‘.\

.
34
L3

New coordinates are (0.5 0.0)

Robot moves forward: 0.5 meters

kk Time Step: 5 *&k* fff

New coordinates are (1.314835507758704 0.3884309501755995) i
QLS
At this point while travelling to the filling-station the s
vehicle strays from its course., Therefore, the errorhandler Eiﬁ
actor is called to handle the error condition. iiﬁ
i
b'- ~»
Course deviation -- calling errorhandler iii
New heading has been computed F
Turn right =9.227130622162847 degrees)
Reorient Robot =-9.227130622162847 degrees :
- :
N
:}I
The vehicle eventually achieves 1its goal and then proceeds g

to accomplish the task of getting nozzle-2. However, the amount .5:

HEES S P GRSy v . . s

of effort it took the vehicle to travel to the filling-station
caused a low fuel state. Thus, a goal detection occurs and the

operating system informs the planner of the new goal.

*k%*k Time Step: 26 *%*k¥

New coordinates are (7.000796326710733 2.999999682931835)

Goal achieved

Remaining resources: 78
Current location: filling-station
Coordinates: (7.0 3.0)

khkhkdkkkhkkhtrthhkhhkhhkhhhkhhkhkhkhkhrhkk

Robot Fuel Critically Low
Ak kEREAXRIA AR ARk kkkhhhhhdkihd

(! Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (maximize *low-robot-fuel-task¥*))))

Possible explanation assuming

(accomplish (save-top~level-tasks nil)
(clear-globals some)
(process~cds *low-robot-fuel-task¥*)
(process~cds *return-suspend-action%*)
(sort *task-plans¥*)
(refine nil)
(restore-top-level~tasks nil))

A meta-plan for this policy {is:

((save~top-level-tasks nil) (clear-globals some)

(process-cds
low-robot-fuel~-task)

(process-cds
*return-suspend-action¥)

(sort *task-planst*)

(refine nil)

(restore~top~level-tasks nil))

96

D XNy

PR A A
Tt T d

Planning

(action (actor (vehicle (name (robot~1))))
(correct (state (low robot-fuel))))

Event not predicted
Possible explanation assuming
(refuel-robot~plan (planner (vehicle (name (robot-1))))

(correct (state (low robot-fuel)))
(with suspended-state))

Event predicted from

(action (actor (vehicle (name (robot-1))))
(correct (state (low robot-fuel))))

(! Adding inference chain to data base

Planning

(action (actor (vehicle (mname (robot-1))))
(objective (return (location suspend-location))))

Event predicted from

(actisn (actor (vehicle (name (robot-1))))
(objective (return (location suspend~location))))

Adding inference chain to data base

Sorting Plans by value

97

Nia
"4 3,

"'l.'
4 -"I‘.l

T, 0,
K
[A

W 7/

® ¥ ¢« v 7

;

Refining the Plans

Refining
(suspend-state-plan (planner (vehicle (name (robot=1)))))
Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location suspend=-location)))
(to (prox (location robot~fuel)))
(with suspended~state))

Refining

(refuel-robot-plan (planner (vehicle (name (robot-1))))
(correct (state (low robot-fuel)))
(with suspended-state))

The planner has successfully planned for the low fuel

.—. condition and control {s returned to the operating system to

continue with the plan projection phase. In order to prevent the
operating system from having to start the plan projection phase

all over again, the planner has instructed the operating system ‘:ﬁ
to suspend {ts current state until it refuels., Therefore, plan =

projection for the original tasks can resume at the point at

which {t was interrupted, £~4

Move Robot S
Start Location: filling-station e
Destination: robot-fuel -

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

k%% Time step: 27 **k¥* o

Confirm initialization

<

.
sta’dn

A

'.l‘

Heading error in initialization
Calling Error Hamdler
New heading has been computed

Turn right -180.0 degrees
Reorient Robot -180.0 degrees

Re-initialize memory
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
*kk% Time step: 28 %%
Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

1A A o < QLR W e R e e e e

b
ey

N
e e
e tete

"J

Lo

© '.nl'-'-
K

‘Al

R CREPERD)

o v
RS

B
v

.

,

o et

| MR .
A

T

The vehicle eventually arrives at the robot refueling i‘

station, and the operating system instructs the vehicle to refuel

by inserting its robot finger into the refuel socket.

**kk% Time Step: 32 *¥*%x

New coordinates are (7.001592653421467 1.000000634136331) v

Goal achieved

99

Remaining resources: 73
Current location: robot-~fuel
Coordinates: (7.0 1.0)

Sensors have located refuel-socket

Arm moved to refuel-socket

robot-finger has been inserted

Robot Refueled i

Current resources: 1000 | S
o
e

The vehicle now returns to the point at which it was

interrupted.

Move Robot
Start Location: robot-fuel
Destination: filling-station R

Encoder initializes memory
Sonar initializes memory s
Gyro initializes memory

Rons |
F_'..’.'
*k%% Time step: 33 *k¥* e
Confirm initialization fﬁ?
Heading error in initialization 3
Calling Error Handler SRI
New heading has been computed I
-

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

Re-initialize memory

A
'.-'-'l‘- .

Ly

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

100 v

................................... SOt RN . TN S AT AT TR . e e TR R el SRy YT

Ly)
L4
i. After arriving back at the filling-station, the operating 1
- oy
- system continues the plan projection phase. However, in the time ';f
it took the robot to refuel itself, nozzle-2 has become i
unavailable. Therefore, the operating system detects a new goal ﬁ§1
» for the vehicle and formulates it into a policy for the planning 132
_ system. The situation is similar to what occurred with nozzle-1; Efj
; however, this time the nozzle was unavailable during the plan :ﬂ%
projection phase. :ﬁﬁ
i
=
%
*kk% Time Step: 38 #**%% y
g New coordinates are (7.001592653421467 2.999999365863669)
; Goal achieved
. Remaining resources: 995
. Current location: filling=-station N,
- Coordinates: (7.0 3.0) N
o Sensors cannot Locate: nozzle-2 i77
Task Failure Detected Eiﬁ
- Failed Function: (a00005) t_
. .\-“\
- Modifying Policy N
i
S
o The planner is now looking for a meta=-plan for the failed 27
E task indicated by its pointer a00005. The solution is similar to j&
- o
101 -

what occurred with nozzle-1 except this time the planner abandons
the task a00005 and then seeks an alternative scenario. The
intervening functions it performs all relate to management of the

plan database,

Looking for a meta-plan for Policy:

(policy (planner robot)
(objective (plan (falled a00005))))

Possible explanation assuming

(accomplish (abandon a00005)
(move-to~top-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task-plans¥*)
(push-new-plan nil)
(refine nil))

A meta-plan for this policy 1is:

((abandon a00005) (move-to-top-level nil)
(clear~globals some)
(extern-plan-fail a00005)
(sort *task-planst*)
(push-new=-plan nil)
(refine nil))

Abandoning Plan a00005

Seeking Meta-Plan for:

(action (actor (vehicle (name (robot=~1))))
(refuel afrcraft)
(with nozzle-2))

Possible explanation assuming
(accomplish
(alternative-scenario

(action (actor (vehicle (name (robot-1))))
(refuel aircraft)

102

-Jl IA .‘l ‘Al ..l "l'

av%

wl

¢

(with nozzle~2))))

Trying Altermative Scenario
Possible explanation assuming

(accomplish
(justify~alternative
(action (actor (vehicle (name (robot-1))))
(refuel aircraft)
(with nozzle-=3))))

Planning

(action (actor (vehicle (name (robot-1))))
(refuel aircraft)
(with nozzle-3))

Event not predicted
Possible explanation assuming

(refuel-plan (planner (vehicle (name (robot-1))))
(object aircraft)
(with nozzle-3))

The planner arrives at a solution and control is once again
returned to the operating system for the plan projection phase.
Nozzle-3, however, is located at filling-station-2 so the

operating system instructs the vehicle to move to filling-

station-2.

Move Robot
Start Location: filling-station
Destination: filling-station-2

Encoder initializes memory
Sonar initializes memory

103

el

.
0

0t

-'.: ',' ..‘.
&y

4,

R}
. Fd
P)
2%
»

’
R
0

JEC VLI PR

s
"y

v
1

77
v

Ko
JP

T e
. :
NCCREREN |

(R DR

.l,.'l.l

LY}
v, N

LR A

A " vy v vre w -
By Ny AR
o
>yt vy

e
i
et

A et
.

n’_';'. 4

£ A e~
et . .
St -
o .

2 b S

L]

AT

3 5%
. ”
) Gyro initializes memory ES
' e
-‘.: _\. *%%% Time step: 39 *k&¥ :\:
p Confirm initialization 3
i Heading error in initifalization :*:
N Calling Error Handler :?.
AN .
2 u' s
New heading has been computed b
Turn right =90.0 degrees fﬁ]
Reorient Robot ~-90.0 degrees)
Re-initialize memory u
- Encoder initializes memory
g Sonar initializes memory
- Gyro initializes memory
a
' *k*k* Time step: 40 wkww
Confirm initialization :fﬁ
Initialization Confirmed P
Q’ Ready For Motion Simulation
; Robot moves forward: 0.5 meters
The vehicle arrives at filling-station-2 and the operating L_é
system instructs the arm to grasp nozzle-3, Once nozzle-=3 has [Qg
been grasped, the vehicle then proceeds to the aircraft. $3
A : L.
= xk*k Time Step: 45 *kx% S
M New coordinates are (9.0 3,0) Ei:
Goal achieved o
P 104 N
-

w4

e
. . Remaining resources: 990 kgi
NI XS Current location: filling-station-2 N
. T Coordinates: (9.0 3.0) N
2 gf-.-_
‘é Sensors have located nozzle-3 E;’
Y .::\:
Hand opened i:

. S;
) Arm moved to nozzle-3 ﬁ;_
A Hand closed

- Arm retracted

’ Move Robot

Start Location: filling-station-2
Destination: aircraft

€ 4
AR

The vehicle arrives at the aircraft and then proceeds to

; refuel the aircraft. Once refueling has been accomplished, the
l; operating system then moves to the work-bench to gather tools to
f? repalr the engine on the aircraft. Notice that the plan of
5 refueling the aircraft and repairing the engine have been com-
bined in such a fashion that there 1s a smooth transition between jfg
: the two plans. Once refueling is accomplished, the vehicle moves EE}
i; from {ts current location to the work-bench to carry out the next ;;E
E task. The plans could not be further combined, however, since 2?%
o each plan accomplishes a critical task and should not be é:q
. -
g interrupted. tgﬁ
.33

105 ¥

*kk% Time Step: 67 *kk%
New coordinates are (4.00000126827246 5.001592652916487)
Goal achieved

. Remaining resources: 974

Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located aircraft
Sensors have located filler-cap
Hand opened

L. Arm moved to filler-cap
Hand closed
Arm rotated
Arm retracted

:% nozzle-3 has been inserted

Move Robot
Start Location: afircraft
Destination: work-bench

*%%*k Time Step: 83 #**x%&

[}

New coordinates are (2.000796326710733 2.000000317068165)
Goal achieved
Remaining resources: 961

Current location: work=~bench
Coordinates: (2.0 2.0)

Sensors have located engine-tools

Hand opened

Arm moved to engine-tools

A
.

Hand closed

Arm retracted

Move Robot
Start Location: work-bench
Destination: alrcraft

%%* Time Step: 99 *k&%

New coordinates are (4.000796326710733 4.999999682931835)

Goal achieved

Remaining resources: 948
Curreant location: alrcraft
Coordinates: (4.0 5.0)

Sensors have located engine Eﬁ
e

Engine housing opened o
T

Engine repaired g.‘

107 BN
X .
i. '_-_
. e . . [
e T O N S PP NP T T T S TN o

-t A Ly . . Padian e
i Al AR iy - . < . «® . . AR B . . . A B . - Rl R T Rl "I 8-S A N AR B M ve 0 \at 0 i

.

v
’,

The first two tasks have now been accomplished and the
operating sytem now moves to the less important house~keeping
: tasks. These last two tasks have been more extensively combined
| by the planner 1in order to minimize movements. The vehicle takes
inventory at the work-bench, then moves to the sensor area to
take inventory, and then moves to the supply room to gather
I necessary supplies for both the work-bench area and the sensor
area. Thus, the vehicle only needs to go to the supply-room one
time.
The actual movements between locations have been edited

out,

Move Robot
Start Location: aircraft
Destination: work-bench

***% Time Step: 115 **k*k

. New coordinates are (2,000796326710733 2.000000317068165)

F Goal achieved

Remaining resources: 935
Current location: work-bench

P: Coordinates: (2.0 2,0)

J

- Work-bench inventory recalled from Blackboard s
i Work-bench inventory accomplished iif
|‘- :' ?:._-':1
f . Move Robot o

y 108 Rt

t r e Temm

e

APRARRTRE { LA
-"-"u""-.l ‘<

v .
t ’
R

Ty
{

Start Locatfion: work-bench
Destination: sensors

kkk* Time Step: 127 *kk% t..

New coordinates are (5.0 3.0) A

s,

Goal achieved

. "’ ‘-..:'.".. -

Remaining resources: 925 iiﬂ
Current location: sensors S
Coordinates: (5.0 3.0) o

2

Sensor inventory recalled from Blackboard e
{9 Sensor inventory accomplished .
Move Robot . Etf
Start Location: sensors e
Destination: supply-room N
#%%% Ti{me Step: 137 #*

New coordinates are (4.000796326710733 1.000000317068165) -
Goal achieved _gﬂ
Remaining resources: 917 ﬁ;}
Current location: supply-room l??
Coordinates: (4.0 1.0) P

s

=]

109 P

¥ QY ARy

L 4 DA

CIR e

’
o

’
*

T

s

.« N

Sensors have located sensor-supplies

Sensor inventory recalled from Blackboard

Cart loaded with semsor-supplies

Sensors have located work-bench-supplies

Work-bench inventory recalled from Blackboard

Cart loaded with work-bench-supplies

Move Robot
Start Location: supply~room
Destination: work-bench

**k* Time Step: 147 **x%

New coordinates are (2,000796326710733 1,999999682931835)

Goal achieved

Remaining resources: 909
Current location: work-bench
Coordinates: (2.0 2.0)

Work-bench inventory recalled from Blackboard

work-bench-supplies obtained from cart

work=~bench~supplies placed on work=-bench

Move Robot
Start Location: work-bench
Destination: sensors

[¢
h k|
.

o, f.'f

EL
AT

" '1' ‘I;-
'r.'r I

A
.

i M N0 N 4
Ay
-
’ VAR

o)
5
1

R W

*k** Time Step: 158 *kk¥k
New coordinates are (5.0 3.0)
Goal achieved

Remaining resources: 900

: Current location: sensors
I Coordinates: (5.0 3.0)

Sensor inventory recalled from Blackboard
sensor-supplies obtained from cart

sensors repaired with sensor-supplies

f: The vehicle has accomplished all of its tasks and now

_ returns to its base location to await further instructions.

Move Robot

E Start Location: sensors
R Destination: base

‘ .
»

:

*%%% Time Step: 183 *¥k*

T

New coordinates are (0.0007963267107332947 3.170681653480445E-07)

T
.

DN DOENMNG

111

-~

t":(:{«.l B e S i A S LS S SRR ST \ AL R

o L

AP I
)

v
[}

P nd

v
L]

2

A
[X4 8

vy

N8

vy .
N TE e
ll' ’

»

Vet
L'

v,
i

e]
rae
VLR,

LW
L RO

S e et S e

r TS T T e

Goal achieved

Remaining resources: 882
Current location: base
Coordinates: (0.0 0.0)

t
=> (exit)

A i i oA ol i s aivh e iy

Sates and o

o,
b. '4..
SIS

s VII. Summary, Conclusions, and Recommendations k
. 'I’.Y;.
. :.:_‘_- »
S
- -_..-,'\
- s
~ .,
= Summary and Conclusions) E
k...
One of the goals of this thesis effort was to simulate the S
processing environment in an autonomous vehicle in order to study ?
the interactions between critical componments. The critical com- Ew\
. ponents, in this case, are the operating system, mission planner, '

- and route planner. Particular emphasis was given to the opera-

ting system and the mission planner, since their functions are ;;;

; crucial to the overall mission of the autonomous vehicle. The :
route planning process, while equally important in function, has

Qé been studied extensively elsewhere. The goal here was to imple-~
ment a software architecture that could make effective use of all

the vehicle”™s resources.,

The architecture adopted for the processing environment was

a blackboard control architecture. The implementation here

demonstrates the flexibility of such an architecture when applied ;
to the domain of autonomous vehicle planning. The mission plan- F:
ner transforms the task of planning for a specific problem into :?
the task of specifying an appropriate control flow for the opera- Eé
- ting system. The architecture explicitly represents domain and E?
? control problems and integrates the problem solving process into gﬁ
; a single basic control loop. Thus, the architecture adapts its ;E
s hD

problem solving knowledge and its basic control loop to specific

»
.o

problem solving situations (7:283-284),

o

e
'.

113

......

By partitloning the operating system into knowledge
specialists that each perform a basic function, a great deal of
flexibility can be achieved. Adding a new capability to the
vehicle simply means adding a new knowledge specialist. When to
use the added knowledge specialist is then specified by the
mission planner. If an additional arm is added to the vehicle,
the mission planner”s rule base need only be modified to include
this additional knowledge. The operating system is not told when
to use it, or how to use it except when the mission planner
decides it should be used. However, the operating system does
require the capability to define its own control flow should the
one specified by the mission planner fail. As was shown in
Chapter VI, occasions may arise where the world model changes in
such a manner as to cause a task failure. Hence, the operating
system must be able to specify a temporary control flow in order
to recover from such an occurrence., It recovers by detecting new
goals and formulating these goals into a structure the mission
planner can understand,

The job of goal detection fllustrates an important component
of the architecture. The operating system formulates the goals
into policies for the mission planner, which then uses its meta-
knowledge to plan for these policies., The mission planner”s
control flow is specified by the planner”s meta-planning
knowledge; therefore, flexibility, similar to the operating sys-
tem”s, is gained by declaratively encoding the planner”s control
flow in the meta-rules, If a new capability is added to the

planner, when and how to use that capability is specified in its

114

rule base and not buried in a procedure.

Meta-knowledge can also be used to understand the actions of
other autonomous vehicles. By "observing” the actions of other
vehicles in the environment, the operating system can formulate
those actions into goals. The mission planner can then use its
meta~knowledge to try and deduce what policifes the other vehicle
is following. 1In this manner, the autonomous vehicle can deter-
mine if i1t can share actions with another vehicle in order to
accomplish a task. The ability to understand actions, as well as
plan for them, are crucial to a truly autonomous vehicle, The
architecture of the planning system provides this capability by
separating knowledge about how to plan from knowledge about the
particular problems,

Finally, the plan projection phase carried out by the opera-
ting system enables flaws in the basic plan to be detected., By
simulating the components of the plan, the operating system can
detect any inconsistencies in the world model, or uncover events
that would interrupt the actual planm execution. Thus, more
efficient plans can be constructed if errors are detected during
the projection phase rather than during the execution phase.
Likewise, the plan projection phase can be used during the under-
standing process to compare components of a hypothesized plan to
the actual plan of another vehicle. 1Inconsistencies would be
passed back to the mission planner who would then try to repair
the hypothesized plan. One mechanism, therefore, can be used
both for understanding and planning due to the explicit nature of

the mission planner”s knowledge base,

115

RS MO DO S gl AN o A A A Ay
e

£ e
‘Y ‘r"a .

’, B
e

A

i P oW R !

-,,
e

B
o a s

|13
X

s
PR 1]
s

144

A
YLt h e
'1 'l 'I.‘l-'l Y
PN S [

T

"a

.

20

Y
..
e,
R,
ce
e
LH‘

"
[
o'y

. '.‘..‘ O,
1208 J
v _l.}"‘ R

e, e i TR ATNY A A AL Al Nl albe A ek Ak fad el -t RS P 02 A Y P . (50 AL e AR aAa il

........

Recommendations

~ v

In order to fully demonstrate the capability of this archi-

tecture, the route planning function needs to be upgraded., The ;;4

DA

al s
b T B B

very simple route planner implemented was sufficient to demon-

.
A
L]
.
]
s

strate the goals of this thesis; however, the rigid structure of
the route planner limited the strategies the vehicle could use to

accomplish its tasks. For example, the use of the mission plan~- .

RSN il
1, "w
IR O N

¥
.
h 7

Ve,
»,

ner to avoid dynamic objects could not be demonstrated simnce this

vy

L
st

would have required a route planner with the ability to plan
routes from arbitrary starting points in the environment. An
3 improvement in the route planning function would allow a greater ;fw

variety of tasks to be accomplished and would further demonstrate NS

the flexibility of the operating system,
(! With the upgrade of the route planner, the sensor actors p”i
should be enhanced., Particular emphasis should be given to the
;j sonar actors and their job of detecting objects im the environ-
ment. This would imply the need to interface the algorithms used E:
by the sonars with the world model. Thus, the operating system e
could use the sonar output to identify objects in the environ-
f ment, thereby enhancing 1ts plan projection capability. Further-
more, this new capability could be used to simulate actually
carrying out the plans in the enviroament.
Although the current implementation is limited to planning [
for four tasks, the addition of new tasks should not require a
great expansion of the knowledge base. The planning rules are

encoded in a very general format and should be applicable to a

variety of tasks. The meta-planning rules, however, should be

AT T et e e e T it PN N A Y P INE AN A S S R A AL A il oa e gy

...........

upgraded to demonstrate more of Wilensky”s meta-~planning con-
cepts. This would require that the appropriate functions be
programmed and then their specific use be encoded in the meta~-
rules,

The mission-planner makes wide use of global variables
during the planning phase that may hamper future upgrade of the
planning system. The global variables should be eliminated or
moved into the blackboard. Likewise, the planner”s knowledge
base should be moved into the blackboard where it can be shared
more easily with other components of the operating system.

The planning system does not have an explicit "understand”
mode., With the current implementation, this capability would not
be difficult to add. The required sensory ability would have to
be canned, of course, but the ability to understand would create
a more powerful planning system,

The planner”s ability to judge plan values should be re-
fined. The current implementation assigns arbitrary numbers to
each task, and the planner merely consliders the tasks with a
higher number as being more important., No attempt was made to
define an approach to assigning plan values, and the result was
that the plans were unjustifiably ordered. By defining an
approach, the planner could better reasom about the tasks it is
planning for.

Finally, the meta-planning knowledge base could be broken
down into levels. This would allow the control flow in the
planner to be more fully specified. Currently, the control flow
{8 specified at a very abstract level with only the main, or

driving, functions specified. Therefore, if a meta-planm calls

117

]

v

- ¥
* o
-

.‘E'Eﬁiﬁ;

oY

" l'—..'.. '.".: {
<

1 4
.

cl B

d

v e v e e,
AR
R

et lu
"'x-»'il
PR
- .

I P e

R
t

“
e

[
I

1) .
b
{e .

S0 e w v s .
b T e e S
EC R
P .
& PR O 3
. h .
. . Y
N .

v
Ly h S
EAt s
. AR
L L

)
~
LS

LR

.
P
U
)

L

:

-

.
-

for the plans to be combined, only the top-level routine is
specified in the meta-rule. The top-level routine then specifies
how to combine plans. By creating another meta-plan level,
control flow in particular functions could be specified, thereby
enhancing the planner”s ability to explain ifts actions, For
example, the combine function will only combine low-value plans;
therefore, if no low-value plans exist, the planner could detect
this and use this as a means to explain why it couldn”t combine
plans., This would be easy to detect since the planner has speci-
fied the control flow in the combine function using a meta-plan;

therefore, the failure could be pinpointed as occurring in one of

the meta~-plans.

118

..
..................

Q- '.

vt

1 o RRIPCIL
' LN
i

s

. i : ° : ."‘
P aa A LI

.
Mot e e e e e .
_alaia el A ettt

Ay

. - PR
I
. e
) e % fe T NN
St «°
LA . . oy
[PP e

A D
T

4

A0S

...........

Appendix: Test Run Transcript

The following is a complete

planning system designed in this thesis. The tasks the planner

is to accomplish are:

(setq robot-task
“((action

mvar defined

molecule defined

(actor (vehicle (name (robot=1))))
(refuel aircraft)
(with nozzle-1))

(action (actor (vehicle (name (robot=-1))))
(repair engine)
(location aircraft)
o (with engine~tools))
- (action (actor (vehicle (name (robot-1))))
Fe (maintaln work-bench)
- (with work-~bench-supplies))
- (action (actor (vehicle (name (robot-1))))
(; (maintain sensors)
® (with sensor-supplies))))

->
- SR N R SR N3N 3R NS 3N N IR 3R I M IN Ross SR EE SR NN SR 35 SR NN SR 3R 3R NE 3K NS 3% NN N ST
. VERSION: Wed Jan 19 11:26:26 1983

nil

-> (load “load.r)
- t
v -> (load “oper.r)

route defined

t
. => (load “load.l)
: link defined
;ﬂ terminal defined

119

ol

P oA

test run of the operating and

AP
RO
g

A o

- v v v
D"».l’l
L 2 B

" .
NN

o
oy
”

.
PRI N

RO Be:a PR AT
L .. '. 1 »
e ’ PLEFSIX
s ‘.' €

r
S ard al

20,
‘..i‘x‘l'
S B

] e,

r’..‘_"\ Wy
P S

n

e)‘."‘.'- e e 0 8

I
s

AR iy

LN

»
(24

-> (ask scheduler go 300)

PR

- *%%* ROBOT SIMULATION *#%%
Current Coordinates: (0.0 0.0)
Current Location: base
Current Resources: 100

g SO
)
«

ACAR) ¢

Ready to plan

Looking for a meta-plam for Policy:

(policy (planner robot)
(objective (plan (efficiently robot-task))))

Possible explanation assuming

(accomplish (clear-globals all)
(process-cds robot-task)
(combine-plans *task-plans¥)
(process-cds *return-action¥*)
(refine nil))

A meta-plan for this policy is:

((clear-globals all) (process-cds robot~task)
(combine-plans *task-plans¥)
(process=cds *return-action%)
(refine nil))

Planning —
(action (actor (vehicle (name (robot-1)))) :ﬁ;
(refuel aircraft) T

(with nozzle-1)) R

IS

Event not predicted ey
Possible explanation assuming gf

(refuel-plan (planner (vehicle (name (robot-1)))) ij]
(object aircraft) -

(with nozzle-1)) T

Event not predicted i;

Possible explanation assuming ii:
£

(goal (planner (vehicle (name (robot-1)))) >

(objective o

(prox (actor (vehicle (name (robot-1)))) i&i

5

RS

120 ;’ -

R
(location aircraft) NS
(with nozzle-=1)))) 2
» ~ % bi
! Event not predicted
| .
. Posgible explanation assuming]
. . "
. (move~plan (planner (vehicle (name (robot-1)))) Y
. (from (prox (location nil))) (N
N (to (prox (location aircraft))) Tl
l (vith nozzle-1)) B
Event not predicted {Eg

No usable inferences fron

l (move-plan (planner (vehicle (name (robot-1)))) g?{
- (from (prox (location nil))) o
(to (prox (location aircraft))) e
(with nozzle-1)) e
No usable inferences from gi
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location aircraft) T
h (with nozzle-1)))) s
No usable inferemnces from
(refuel-plan (planner (vehicle (name (robot=-1)))) 'ﬁfl
(object aircraft) T
| (with nozzle-1)) liii
f, No usable inferences from iﬁr
i; (action (actor (vehicle (name (robot=1)))) }5‘
. (refuel aircraft) ==
k (with nozzle-1)) i
}. No inference chain found-- R i
g R
b Seeking Meta-Plan for: Lj
- (action (actor (vehicle (name (robot-1)))) Z;
s (refuel afrcraft) NS
e (with nozzle-1)) ff%

Possible explanation assuming

.
(accomplish {
1

e
. l“ :.
» ..h RN
N -"“.“
> RN
- L
> NN
) O
- .t
) et
-t .t
. .

- o]
) 121 .

W

A

17e

’

2
W
G

(alternative-scenario
{action (actor (vehicle (name (robot-1))))
(refuel aircraft)
(with nozzle-1))))

Trying Altermative Scemario
Possible explanation assuming
(accomplish
(justify-alternative
(action (actor (vehicle (name (robot-1))))

(refuel aircraft)
(with nozzle-2))))

Planning
(action (actor (vehicle (name (robot=1))))
(refuel aircraft)
(with nozzle=-2))
Event not predicted
Possible explanation assuming
(refuel-plan (planner (vehicle (name (robot=-1))))
(object aircraft)
(with nozzle-2))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot=1))))
(location aircraft)
(with nozzle=2))))
Event not predicted
Posgible explanation assuming
(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location filling-station)))
(to (prox (location afircraft)))
(with nozzle-2))
Event not predicted

Possible explanation assumiag

122

(goal (planner (vehicle (name (robot-1))))
SO (objective
- (grasp (object nozzle-2)
(location filling-station))))

Event not predicted

Possible explanation assuming

(grasp-plan (planner (vehicle (name (rodbot-1))))

(object nozzle-2)
(location filling~-station))

Event not predicted
l Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))

(objective
(prox (actor (vehicle (name (robot-1))))
(location filling-station)

| Event not predicted

Possible explanation assuming
. ‘4‘ (move-plan (planner (vehicle (name (robot-1))))
- (from (prox (location current-location)))
- (to (prox (location filling-station)))
3 (with nil))
' Event predicted from

(action (actor (vehicle (name (robot~1))))

(refuel aircraft)
(with nozzle-~2))

Adding inference chain to data base

Planning

i (action (actor (vehicle (name (robot-1))))
(repair engine)

(location aircraft)

(with engine-tools))

Event not predicted

N - & ¥ 3 + - 7

Possible explanation assuming

(repair-engine-plan (planner (vehicle (name (rodbot-1)))) :;fj

i 123 .

JeWy LT Ty,

t, AW T Tg Ty 0 Y

(object engine)
(location aircraft)
(with engine-tools))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot=1))))
(location aircraft)
(with engine-tools))))
Event not predicted
Possible explanation assuming
(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location work-bench)))
(to (prox (location aircraft)))
(with engine-tools))
Event oot predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective

(grasp (object engine~tools)
(location work~bench))))

Event not predicted
Possible explanation assuming
(grasp-plan (planner (vehicle (name (robot-1))))
(object enginme-tools)
(location work-bench))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot~1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location work-bench)
(with nil))))
Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-1))))

124

(from (prox (location current-location)))
. (to (prox (location work-bench)))
N (with nil))

' Event predicted from

(action (actor (vehicle (name (rodbot=1))))
(repair engine)
K (location aircraft)
i (with engine=-tools))

l':‘:", o

Adding inference chain to data base

Salsiy
,

4
N
.

i Planning
(action (actor (vehicle (name (robot-1))))
(maintain work-bench)
(with work-bench-supplies))
Event not predicted
Possible explanation assuming
(replenish-work-bench-plan
(planner (vehicle (name (robot-1))))
lé (maintain work-bench)
- (with work-bench-~supplies))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location work-bench)
(with work-bench~supplies))))
Event not predicted
Possible explanation assuming
(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location supply~room)))
(to (prox (location work-beanch))) -
(with work~bench-supplies))
Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot~1))))
(objective

I 125 o

(load-cart (actor (vehicle (name (rodbot=1))))
(location supply-room)
(with work-bench~supplies)
(using (inventory
(location work=-bench))))))

Event not predicted
Possible explanation assuming
(get-supply-plan (planner (vehicle (name (robot-1))))
(location supply-room)
(supplies work-bench-supplies)
(inventory work-bench))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(from work-bench)
(to supply-~room)
(with (knowledge
(inventory work-bench-supplies))))))
Event not predicted
Possible explanation assuming
(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location work-bench)))
(to (prox (location supply=-room)))
(with (knowledge (inventory work-bench-supplies))))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(do (actor (vehicle (name (robot=-1))))
(inventory work-bench))))
Event not predicted

Possible explanation assuming

(iaventory-plan (planner (vehicle (name (robot-1))))
(location work-bench))

Event not predicted

Possible explanation assuming

ey

| 2ol PRAPRRNER S

RV 2 4 LIS I S S A AN

T
Y
‘a

[

' -:\-:\:
. N (goal (planner (vehicle (name (robot-1)))) NN
Q@j (objective ?{ﬁ

) (prox (actor (vehicle (name (robot-1)))) .;?:
(location work-bench) —

(with ni1)))) F

: Event not predicted Sﬁ%;
._~_~.:_\

Y Possible explanation assuming é&f
(move-plan (planner (vehicle (name (robot=-1)))) Ep;

(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Event predicted from K '?
(action (actor (vehicle (name (robot-1))))
(maintain work~bench)
(with work-bench-supplies))

Adding inference chain to data base

Planning
..‘ (action (actor (vehicle (name (robot-1))))
: (maintain sensors)
- (with sensor-supplies))
Event not predicted

Possible explanation assuming

(sensor-repair-plan (planner (vehicle (name (robot=1))))

(maintain sensors) Ei;i

(with sensor-supplies)) SRR

.._~ R ‘—\,

Event not predicted E;*

Possible explanation assuming

(goal (planner (vehicle (name (robot=-1))))

(objective s

(prox (actor (vehicle (name (robot-1)))) ¢
(location sensors) -

(with sensor-supplies))))

NI A
PN
2 0t

Event not predicted C¥$

S
Possible explanation assuming e
(move-plan (planner (vehicle (name (robot~1)))) e

127 S

i 5 . ., . .. - . -
A S S ACE A R A LA Sl LI A I e i Rl i % 4 . e b n v . s Pl S Bl Sl e Sl e K NP -2 S

-

} (from (prox (location supply~-room))) -
SO (to (prox (location sensors))) N
1oL (with sensor-supplies)) e
j Event not predicted t;
> "l
ﬁ Possible explanation assuming e
g ".:o:
‘f (goal (planner (vehicle (name (robot-1)))) &?
N (objective &
(load-cart (actor (vehicle (name (robot-1)))) fe
o (location supply-room) P
- (with sensor-supplies) s
(using (inventory (location sensors)))))) T
Event not predicted gﬁi
g
Possible explanation assuming ﬁﬁj
(get-supply-plan (planner (vehicle (name (robot-1)))) E&f
(location supply-room) e
(supplies sensor-supplies) e
= (inventory sensors)) :
- Event not predicted -
f' Possible explanation assuming)
(e (goal (planner (vehicle (name (robot-1)))) b
(objective e
N (prox (actor (vehicle (name (robot-1)))) Ok
o (from sensors) -l
- (to supply-room) oS
(with (knowledge LY
- (inventory semsor-supplies))))))
- Event not predicted
Possible explanation assuming
- (move~plan (planner (vehicle (name (robot-1))))
(from (prox (location sensors)))
= (to (prox (location supply-room)))
2 (with (knowledge (inventory sensor-supplies))))
s Event not predicted
P Possible explanation assuming U
= (goal (planner (vehicle (name (robot-1)))) j@:
50 (objective N
(do (actor (vehicle (name (robot~1)))) B
(inventory sensors)))) T

Event not predicted

p Possible explanation assuming

(inventory-plan (planner (vehicle (name (robot=-1))))
(location sensors))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location sensors)
(with nil))))

Event not predicted

Possible explanation assuming

(move~plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))

(to (prox (location sensors)))
(with nil))

Event predicted from

o (action (actor (vehicle (name (rodbot-1))))
..' (maintain sensors)
(with sensor-supplies))

Adding inference chain to data base

; Combining Plans zﬁf
? i
. Sorting Plans by value éé?
Planning jl§;

(action (actor (vehicle (name (robot-1)))) ?fﬁ%

(objective (return (location base)))) :33:

Event not predicted E:ﬁ

Possible explanation assuming ‘;“,

(goal (planner (vehicle (name (robot-1)))) Riﬁz

(objective iﬁj

(prox (actor (vehicle (name (robot=1))))
(location base) NN
(with a11)))) o

..... e B " ’ . -
RASRRSAS R i R . EAADI IR NN ot Bt it e o M R AN AR S i e o~ 2 4n 41 "Rl “ady, el A 'y Y A TR A

L)
AR
P

o v
a0

il

f
Ty
%

Event not predicted

I
PR
£ e

.,..,.
A b,

o
. T

Possible explanation assuming

A

(move-plan (planner (vehicle (name (robot=1))))
3 (from (prox (location current-location)))
(to (prox (location base)))

%
4

o 4

]
h)

(with anil)) &g'

Event predicted from t;T

(action (actor (vehicle (name (robot~1)))) L
(objective (return (location base))))

Adding inference chain to data base ;i;

The database contains:

(((move-plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with nil)) (a00005)
m00007)
({grasp-plan (planner (vehicle (name (robot-1))))

4

- ,......
U ks LSRR

] Nt e T
. FACARRRRRRERA
R !

v 4y A L

N

.
1,8,

*
:""] ,-

Lt s
D an sl
', ., !, e
. : .,
a

s
» LI

- (object nozzle-2) e
] e (location filling-station)) (a00005)
¥ m00008) s
- ((move-plan (planner (vehicle (name (robot-1)))) N
- (from (prox (location filling-station))) : N
. (to (prox (location aircraft))) ﬁéﬁ

"

(with nozzle-2)) (a00005)
m00009)
((refuel-plan (planner (vehicle (name (robot-1))))
(object aircraft)

o (with nozzle-2)) (a00005)
- nil)
= ((move-plan (planner (vehicle (name (robot=-1))))

(from (prox (location current-location)))

(to (prox (location work-bench)))

(with nil)) (a00010)

m00012)
((grasp-plan (planner (vehicle (name (robot-1))))
(object engine-tools)
(location work-bench)) (a00010)
m00013)

. ((move~plan (plamnner (vehicle (name (robot=1))))
- (from (prox (location work-bemnch)))
' (to (prox (location aircraft)))

(with engine~tools)) (a00010)

m00014)

"v /1 L ’,
PP Tt
]

)

,,,. -

e,

e g

¢ e
P

3
PRt

2 o B
1 7

e e .
"‘j’l e S,
e e T Wt e
N

((repair-engine-plan (planmer (vehicle (name (robot-1)))) i¥
(object engine) >
130 i

(location aircraft)
(with engine-tools)) (a00010)
nil)
((move-plan (planner (vehicle (name (robot~1))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil)) (a00015)
m00017)
((inventory-plan (planner (vehicle (name (robot-1))))
(location work-bench)) (a00015)
m00018)
((move-plan (planner (vehicle (name (robot-1))))
(from (prox (locatiom current-location)))
(to (prox (location semsors)))
(with nil)) (a00022)
m00024)
((inventory-plan (planner (vehicle (name (robot=1))))
(location sensors)) (a00022)
m00025)
((mnove-plan (planner (vehicle (name (robot-1))))
(from (prox (location sensors)))
(to (prox (location supply-room)))
(with (knowledge (inventory sensor-supplies)))
(also (knowledge (inventory work-bench~supplies))))
(a00015 a00022)
m00026)
((get=-supply-plan (planner (vehicle (name (robot-1))))
(location supply-room)
(supplies sensor-supplies)
(inventory sensors)) (a00022)
m00027)
((get-supply-plan (planner (vehicle (name (robot-1))))
(location supply-room)
(supplies work-bench-supplies)
(inventory work-bench)) (a00015)
m00020)
((move~plan (planner (vehicle (name (robot-1))))
(from (prox (location supply-room)))
(to (prox (location work-bemnch)))
(with work-bench-supplies)) (a00015)
m00021)
((replenish-work-bench-plan
(planner (vehicle (name (robot-1))))
(maintain work-bench)
(with work-bench-;upplies)) (a00015)
nil
((move-plan (planner (vehicle (name (robot=-1))))
(to (prox (locatiou sensors)))
(with sensor-supplies)
(from (prox (location work-bench)))) (a00022)
m00028)
((sensor-repair-plan (planmer (vehicle (name (robot-1))))
(maintain sensors)
(with sensor-supplies)) (a00022)
nil)

131

o

- -

((move-plan (planner (vehicle (name (robot-=1))))
(from (prox (location current~location)))
(to (prox (location base)))
(with nil)) (a00029)
nil))

Refining the Plans
Refining

(move~plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))
(to (prox (location filling-station)))
(with anil))

Refining

(grasp-plan (planner (vehicle (name (robot-1))))
(object nozzle-2)
(location filling-station))

Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location filling-station)))
(to (prox (location aircraft)))
(with nozzle~-2))

Refining

(refuel-plan (planner (vehicle (name (robot-1))))
(object aircraft)
(with nozzle-2))

Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))
(to (prox (location work-bench)))
(with nil))

Refining
(grasp-plan (planner (vehicle (name (robot-1))))

(object engine=-tools)
(location work-bench))

Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (locatiom work=-bench)))
(to (prox (location aircraft)))
(with engine-tools))

Refining

132

s, "I‘ ‘...“. .'... .
WO A
et PRSI

e

! /'.‘_I"Yn. 'n_'.r. e
.. HEE R AR

’
.
[N

B R AT aee
g WJ_(ﬂﬁﬂ/

(repair-engine-plan (planner (vehicle (name (robot-1))))
N (object engine)

) (location aircraft)

(with engine-tools))

DM
)

l'l.

Refining

I
b..
e

-
R
\."

T Y,
-l""' Pl

(move-plan (planner (vehicle (name (robot-1))))

o (from (prox (location current-location)))
(to (prox (location work-bench)))

(with ail))

Refining

(inventory-plan (planmer (vehicle (name (robot-1))))
(location work=bench))

Refining

g (move~plan (planner (vehicle (name (robot-1))))

3 (from (prox (location current-location)))
-y (to (prox (location sensors)))

(with nil))

Refining
‘; (inventory-plan (planner (vehicle (name (robot-1))))
L (location sensors))
Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location semsors)))
(to (prox (locatiom supply=-room)))
(with (knowledge (inventory sensor-supplies)))
- (also (knowledge (inventory work-bench~supplies))))

Refining

(get-supply-plan (planner (vehicle (mame (robot-1))))
(location supply-~room)
(supplies sensor-supplies)
(inventory sensors))

Refining
(get-supply~-plan (planner (vehicle (name (robot-1))))
(location supply-~room)
; (supplies work-bench-supplies)
- (inventory work-bench))
- s Refining

(move-plan (planner (vehicle (name (robot-1))))

133

......

o s,
b r o EX

'l ¥ ‘{‘r s

(from (prox (location supply-room)))
(to (prox (location work-bench)))
(with work-bench-supplies))

R
[

AN,
R

Fv vy
. ’

Refining

i

(replenish-work-bench-plan
(planner (vehicle (name (robot-1))))
(maintain work-beach)
(with work-bench-supplies))

‘h
"

Refining

(move-plan (planner (vehicle (name (rodot-1))))
(to (prox (location sensors)))
(with sensor-supplies)
(from (prox (location work-bench))))

Refining

(sensor-repair-plan (planner (vehicle (name (robot=1))))
(maintain sensors)
(with sensor-supplies))

Refining

(move-plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))
(to (prox (location base))) -
(with nil)) D

The database now contains: Lf?

(((executive (tell (route-planuner))
(start current-location)
(goal filling-station)) (a00005)
m00032)
((executive (tell (scheduler))
(move route)) (a00005)
ail)
((executive (tell (sensor))
(locate nozzle-2)) (a00005)

m00034) o
((executive (tell (arm)) <

(open hand)) (a00005) L

m00035) L

((executive (tell (arm)) AR

(move nozzle-2)) (a00005) N

m00036) ' SR

((executive (tell (arm)) P
(close hand)) (a00005)
m00037)

((executive (tell (arm))

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

(retract arm)) (a00005)
nil)
(tell (route~planner))
(start filling-station)
(goal aircraft)) (a00005)
m00039)
(tell (scheduler))
(move route)) (a00005)
nil)
(tell (sensor))
(locate aircraft)) (a00005)
m00041)
(tell (sensor))
(locate filler-cap)) (a200005)
m00042)
(tell (arm))
(open hand)) (a00005)
m00043)
(tell (arm))
(move filler-cap)) (a00005)
m00044)
(tell (arm))
(close hand)) (a00005)
m00045)
(tell (arm))
(rotate arm)) (a00005)
m00046)
(tell (arm))
(retract arm)) (a00005)
m00047)
(tell (arm)) :
(insert nozzle-2)) (a00005)
nil)
(tell (route-planner))
(start current-location)
(goal work-bench)) (a00010)
m00049)
(tell (scheduler))
(move route)) (a00010)
nil)
(tell (sensor))
(locate engine-tools)) (a00010)
m00051)
(tell (arm))
(open hand)) (a00010)
m00052)
(tell (arm))
(move engine-tools)) (a00010)
m00053)
(tell (arm))
(close hand)) (a00010)
m00054)
(tell (arm))
(retract arm)) (a00010)
nil)

ROY

"’I- AR ,:;’*r‘r;',m;-r".: 2 T e v ",‘-‘T‘T"‘V“‘I"v" PR
. L AL P RN I i o
. -~ 8 7 s & . 4 oo e e LI T I T . ata "

B

sl

r"e “e s = N

L4

L uat AT
BT

" "'l,.
v'- .

il

((executive (tell (route-planner)) “ay
(start work-~bench) e

(goal aircraft)) (a00010) e

m00056) o

((executive (tell (scheduler))

A | PRt

(move route)) (a00010) N

ail) A

((executive (tell (semsor)) e
(locate engine)) (a00010) A

m00058) A

((executive (tell (arm)) .
(open engine)) (a00010) G0

m00059) o

((executive (tell (arm))
(repair engine)) (a00010)
nil)
((executive (tell (route-planner))
(start curreant-location)
(goal work-bench)) (a00015)
m00061)

i
L, -t

N

DD o & SRR
PR

Se

!._ o

((executive (tell (scheduler)) o

(move route)) (a00015) P
nil)

((executive (tell (blackboard))
(recall (inventory (location work-bench))))

(a00015)

m00063)

((executive (tell (scheduler))
(do (inventory (locatfon work-bench)))) (a00015)

nil) -
((executive (tell (route-planner)) -
(start current-location) :
(goal sensors)) (a00022) L
m00065) =s 7
((executive (tell (scheduler)) o
(move route)) (a00022) OO
nil) e
((executive (tell (blackboard)) RO
(recall (inventory (location sensors)))) (a00022) o

m00067) £~

((executive (tell (scheduler)) R
(do (inventory (location sensors)))) (a00022) T
nil) N
((executive (tell (route-planner)) s
(start sensors) CeT

(goal supply-room)) (a00015 a00022) ;“

m00069) =
((executive (tell (scheduler)) e
(move route)) (a00015 a00022) w3
nil) .

((executive (tell (semsor)) o
(locate sensor-supplies)) (a00022) P
m00071) 1

e 0w
DU IR ()
RN "

g ¥ 8
o,

((executive (tell (blackboard))

136

(recall (inventory (location sensors)))) (a00022)

lad AN
R T

K Lae JEAPATARRARRTAY

((executive

((executive
((executive
(a00015)

m00075)
((executive

((executive

((executive

((executive

(a00015)
m00079)
((executive

((executive

((executive

((executive

((executive

({(executive

((executive

((executive

m00072)
(tell (scheduler))
(load cart)
(with sensor-supplies)) (a00022)
nil)

(tell (sensor))
(locate work-bench~supplies)) (a00015)

m00074)
(tell (blackboard))
(recall (inventory (location work-bench))))

(tell (scheduler))
(load cart)
(with work-bench-supplies)) (a00015)
ail)

(tell (route~planner))
(start supply-room)
(goal work-bench)) (a00015)

m00077)
(tell (scheduler))
(move route)) (a00015)

nil)

(tell (blackboard))
(recall (inventory (location work-bench))))

(tell (scheduler))
(get work-bench-supplies)
(from cart)) (a00015)
m00080)
(tell (scheduler))
(put work-bench-supplies)
(on work-bench)) (a00015)
nil)
(tell (route-planner))
(start work-bench)
(goal sensors)) (a00022)
m00082)
(tell (scheduler))
(move route)) (a00022)
nil)
(tell (blackboard))
(recall (inventory (location semnsors)))) (a00022)
m00084)
(tell (scheduler))
(get sensor-supplies)
(from cart)) (a00022)
m00085)
(tell (scheduler))
(repair sensors)
(with sensor-supplies)) (a00022)
nil)
(tell (route-planner))
(start current-~location)

137

(goal base)) (a00029)
m00087)
((executive (tell (scheduler))
(move route)) (a800029)

nil))
Move Robot
Start Location: base
Destination: filling-station

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
*kk% Time step: 1 %¥¥%x
Confirm initialization

Initialization Confirmed
Ready For Motion Simulationmn

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
**kk%* Time Step: 2 *¥k¥
New coordinates are (0.5 0.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
*k%k% Time Step: 3 *¥**%x
New coordinates are (1.0 0.0)

New route step

New heading has been computed

138

........

> e
€
rlv g

[y
o,

LN
e

PR A e N
P]

3
& %"

A

-3

I

il A

R
-,

A

A

4
-
.

et

Turn left 45 degrees
Reorient Robot 45 degrees

*kk% Time step: 4 *kk*

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

***% Time Step: 5 *k*%

New coordinates are (1.314835507758704 0.3884309501755995)

Course deviation -- calling errorhandler

New heading has been computed

WL e F v v - .
D

Turn right -=9,227130622162847 degrees
Reorient Robot =-9.,227130622162847 degrees

*k%k Time step: 6 **kk* :;é‘

T YV YN, v,

..‘ Robot moves forward:; 0.5 meters

Encoder updates memory e
Sonar updates memory e

Gyro updates memory oo

**%*% Time Step: 7 **kx* Eii

: R
L S
L New coordinates are (1.687854361240208 0.7213828009698912) ;3:5

- T

New route step

New heading has been computed

ey

Turn left 3.227130622162847 degrees ROn
Reorient Robot 3.227130622162847 degrees ey

rvvey

*k*k Time step: 8 *kk*k

Robot moves forward: 0.5 meters

Encoder updates memory

139

L1 T

Sonar updates memory
Gyro updates memory

**k* Time Step: 9 *#%k

New coordinates are (2,334723082637353 1,371430286796524)

Course deviation -~ calling errorhandler

New heading has been computed

Turn right =-4.603079295651878 degrees
Reorient Robot =-4.,603079295651878 degrees

*kk*k Time step: 10 *k*x
Robot moves forward: 0.5 meters
Encoder updates memory
Sonar updates memory

Gyro updates memory

k%x%k% Time Step: 11 *k&*

New coordinates are (2.673335159021275 1.739318668954712)

New route step

New heading has been computed

Turn right =47.39692070434812 degrees
Reorient Robot -47.39692070434812 degrees

*%k% Time step: 12 ***kk

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*kk% Time Step: 13 *k&*

New coordinates are (3.5 2.0)

140

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%k%kk Time Step: 14 *k%%

New coordinates are (4.0 2.0)

New route step

New heading has been computed

Continue same heading for new segment

%%% Time step: 15 ***¥

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%% Time Step: 16 *k%*

New coordinates are (4.5 2.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k¥kk Time Step: 17 %%+

New coordinates are (5.0 2.0)

New route step

New heading has been computed

Continue same heading for new segment

141

CRARr s ~hee Bt Aagh g Sy gy -2)

S atald
.
A4

s

il

&
v

T et
e 0 v f
R R
ood e

et T

-"
LR S W

. J'rjlrl:[—
2%, “Lq

LT

R 1
ol et
. "

o
N

2T

PLIN

N 2R S LA
AR

) L PR

a2 Ve Te T e Ty e g

‘ ,t, AR

..
e
NS
P

5 o

o
v
.

4
.

**k* Time step: 18 #*%%*

i
.
*

Robot moves forward: 0.5 meters

ax
A Ay

Encoder updates mémory
Sonar updates memory
Gyro updates memory

XX

OF i r -va rv/

*k%k Time Step: 19 *¥k¥k
New coordinates are (5.5 2.0)
Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%k% Time Step: 20 *%**
(é New coordinates are (6.0 2,0)

New route step

New heading has been computed

Continue same heading for new segment

*%k% Time step: 21 %*k%x*

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory .
Gyro updates memory =

r=e e e
et

*kkk Time Step: 22 *k¥k*k

New coordinates are (6,5 2.0)

Robot moves forward: 0.5 meters o

142

- " ‘.0 h™ .'n _... -‘. - 3 - - . -
AN AR SRR

o3

)

wy

Encoder updates memory Y

Sonar updates memory w44

Gyro updates memory NI

*kkk Time Step: 23 k¥ ey

t

W

Rt

New coordinates are (7.0 2.0) M

’ﬂf‘;t

New route step ~1§

B

Ry

New heading has been computed &3;

DA

Turn left 90.0 degrees L.

Reorient Robot 90.0 degrees e
.

¥%* Time step: 24 *kk%

Robot moves forward: 0.5 meters !

Encoder updates memory R
Sonar updates memory e
Gyro updates memory o

*%%% T{me Step: 25 %kkk
New coordinates are (7.000398163355367 2.499999841465917) ;ﬂ:
Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory .
Gyro updates memory -

New coordinates are (7.000796326710733 2,999999682931835)

%%k Time Step: 26 *k*& Ef}
'..'-'.Aﬁ

9

J

|

e

Goal achileved X
o

BN

Remaining resources: 78 ;Eb
Current location: filling-station S
Coordinates: (7.0 3.0) Pace

143 ;

By
.. PR
N dddkkhkkhhhdhkkhhhhhhdkkkhhhhhhid e
x ?
N Robot Fuel Critically Low e
.. s}Q. ded kA hddhdRdhddhdkhdkhhdkhhkhhhhr S
-, > o. '«

Looking for a meta-plan for Policy:

A s
e (policy (planner robot) o
M (objective (plan (maximize *low-robot-fuel-task¥*)))) ;;3
4 ’ .0'5:.
% Possible explanation assuming ah
= (accomplish (save-top-level-tasks nil) ﬁﬁ,
. (clear-globals some) e
(process=cds *low-robot-fuel-task*) T
(process=-cds *return-suspend-action¥) e
(sort *task-plans¥*) S
(refine nil) £ 4
(restore-top~level~tasks nil))
A meta-plan for this policy 1is: i
R . -
((save-top-level-tasks nil) (clear-globals some) vy
(process=-cds o]
*low-robot~fuel-task¥)]
(process~cds el
return~suspend-action%)
(! (sort *task-plans¥*)
(refine nil)
(restore-top-level-tasks nil))
- Planning

(action (actor (vehicle (name (robot-1))))
(correct (state (low robot-fuel))))

Event not predicted

Possible explanation assuming

(refuel~robot~plan (planner (vehicle (name (robot-1))))
(correct (state (low robot-fuel)))

(with suspended-~state)) ;f'
Event not predicted v
b P L.
. Possible explanation assuming T
; (goal (planner (vehicle (name (robot=1))))

. (objective s
~ (prox (actor (vehicle (name (robot-1)))) (e
3 (location robot-fuel) e
(with suspended-state)))) L

N

hY

Event not predicted

Possible explanation assuming

(move-plan (planner (vehicle (name (robot=1))))
(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state))

Event not predicted

Possible explanation assuming

(goal (planner (vehicle (name (robot-1))))
(objective (suspend (task current-task))))

Event not predicted |-
Possible explanation assuming

(suspend-state-plan (planner (vehicle (name (robot-1)))))

Event predicted from L,ﬁ
(action (actor (vehicle (name (robot-1)))) kﬁf
(correct (state (low robot-fuel)))) Ty

o

Adding inference chain to data base v
b

Planning o
(action (actor (vehicle (mame (robot-1)))) S
(objective (return (location suspend~location)))) N

Event not predicted
Possible explanation assuming

(goal (planner (vehicle (name (rodot~1)))) L
(objective E_
(prox (actor (vehicle (name (robot-1))))
(location suspend~location)
(with nil))))

Event not predicted

NN e ARt
Rl L
©or o [.

Possible explanation assuming

(move-plan (planner (vehicle (name (robot-1)))) &:
(from (prox (locatiom current-location))) N
(to (prox (location suspend-location))) P

(with nil))

Event predicted from

145

(action (actor (vehicle (name (robot-1))))
(objective (return (location suspend-location))))

N I
2260

o Adding inference chain to data base

The database contains:

.
AR

DO

(((suspend-state-plan (planner (vehicle (name (robot-1)))))
(a00095)
m00097)
((move-plan (planner (vehicle (name (robot-1))))
(from (prox (location suspend-location)))
(to (prox (location robot-fuel)))
(with suspended-state)) (a00095)
m00098)
((refuel~robot-plan (planner (vehicle (name (robot-1))))
(correct (state (low robot-fuel)))
(with suspended-state)) (a00095)
nil)
((move-plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))
(to (prox (location suspend-location)))
(with nil)) (a00099)

el -
DM [l by .,

nil))

&! Sorting Plans by value [;:
2

Refining the Plans jﬁg

Refining 'fi
(suspend-state-plan (planner (vehicle (name (robot-1))))) Eé?

Refining :&;
(move-plan (planner (vehicle (name (robot=-1)))) Ei

= (from (prox (location suspend-location)))
(to (prox (location robot-fuel)))

(with suspended-state)) ;i

Refining ﬁi

2 (refuel-robot=-plan (planner (vehicle (name (robot-1)))) g?
N (correct (state (low robot-fuel))) heh
a (with suspended-state)) o
Y .~:‘
- Refining i
v F}
T e (move-plan (planner (vehicle (name (robot-~1)))) T
: i (from (prox (location current-location))) NS
(to (prox (location suspend=~location))) e

146

DS I I A L e &Y W BN A L - e U ot byl LA N M e i i i e A

(with ail))

The database now contains:

o (((executive (tell (blackboard))

i (save state)) (a00095)

. nil)

) ((executive (tell (route-planner))
(start suspend-location)

> (goal robot-fuel)) (a00095)

o m00103)

((executive (tell (scheduler))
(move route)) (a00095)
nil)
((executive (tell (sensor))
(locate refuel-socket)) (a00095)
m00105)
((executive (tell (arm))
(move refuel-socket)) (a00095)
m00106)
((executive (tell (arm))
(insert robot-finger)) (a00095)
m00107)
((executive (tell (scheduler))
. (robot refueled)) (a00095)
- = nil)
\9 ((executive (tell (route-planaer))
(start current~location)
(goal suspend-location)) (a00099)
- m00109)
o ((executive (tell (scheduler))
(move route)) (a00099)
nil))

Move Robot
Start Location: filling-station
Destination: robot—-fuel

e Encoder initializes memory
o Sonar initializes memory
) Gyro initializes memory

3 *x%% Time step: 27 *k#s

Confirm initialization

Heading error in initialization
Calling Error Handler F"%

New heading has been computed St

14 7 gl".:

T e Te R WW ..
‘IA'-'.',I AASA TEAAEN

T
€

A A

Turn right -180.0 degrees
Reorient Robot -180.0 degrees

Re-initialize memory
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
%%k Time gtep: 28 ****
Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%% Time Step: 29 *k&*
New coordinates are (7.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*kk% Time Step: 30 *%&*
New coordinates are (7.000796326710733 2.000000317068165)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 31 ****

New coordinates are (7.0011944900661 1.500000475602248)

148

2
3
N

-8
3
<.
-

T ey e
'

ZWHEITVU:
PPN B A A

-y
[
P PLCIN

’

’
. e . r e .
\ _T L,
e et L
(LA I O .
PN ‘el
Ve R

)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 32 ***xx

New coordinates are (7.001592653421467 1.000000634136331)

Goal achtieved

Remaining resources: 73
Current location: robot-fuel
Coordinates: (7.0 1.0)

Sensors have located refuel-socket

Arm moved to refuel-socket

robot-finger has been inserted

Robot Refueled
Current resources: 1000

Move Robot

Start Location: robot-fuel

Destination: filling-station
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

*%%% Time step: 33 *#***%

Confirm initialization
Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees

149

r -

Reorient Robot 180.0 degrees

W Re-initialize memory

P~ SN P SRR e
»

Encoder initializes memory

Sonar initializes memory

Gyro initializes memory
*k%% Time step: 34 *kxk

Confirm initialization

B LA AR

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

AR RIS

%% Time Step: 35 *k&*

New coordinates are (7.000398163355367 1.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

= *kk* Time Step: 36 *k¥k

New coordinates are (7.000796326710733 1.999999682931835)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%k Time Step: 37 *k&k%

New coordinates are (7.0011944900661 2.499999524397752)

...............................

...........................
....................................
-’ "

B J R RN RS o P

JEm Lt

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kk Time Step: 38 *kxx

New coordinates are (7.001592653421467 2.999999365863669)

Goal achieved

Remaining resources: 995
Current location: filling-station
Coordinates: (7.0 3.0)

Sensors cannot Locate: nozzle-2

Task Failure Detected

Failed Function: (a00005)
Modifying Policy
Looking for a meta~plan for Policy:

(policy (planner robot)
(objective (plan (failed a00005))))

Possible explanation assuming

(accomplish (abandon a00005)
(move-to~top=-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task~-plans¥*)
(push-new=plan nil)
(refine nil))

A meta-plan for this policy is:

((abandon a00005) (move-to-top-level nil)
(clear-globals some)
(extern-plan-fail a00005)
(sort *task-plans¥*)
(push-new-plan nil)
(refine nil))

N Abandoning Plan a00005

Seeking Meta-Plan for:

; ik
4 ! ::
p (action (actor (vehicle (name (robot-1)))) e

' (refuel aircraft) .

A (with nozzle=-2)) kf'
Possible explanation assuming f

s (accomplish]

I (alternative~scenario oL

(action (actor (vehicle (name (robot-1)))) B-q

(refuel aircraft) L

(with nozzle=2)))) R

; Trying Alternative Scenario tq
S _':..“'

Possible explanation assuming e

=) (accomplish g}:
. (_! (justify-alternative {

, ' (action (actor (vehicle (name (robot-1)))) e

(refuel aircraft) G

: (with nozzle=3)))) N
. Planning o
S (action (actor (vehicle (name (robot-1)))) <
N (refuel aircraft) .
- (with nozzle-~3)) e
%f Event not predicted ::
Possible explanation assuming El;

o (refuel-plan (planner (vehicle (name (robot-1)))) ii
B (object aircraft) ¢
- (with nozzle-3)) o

Event not predicted
Possible explanation assuming

(goal (planner (vehicle (name (robot-1))))

o . (objective : tﬁﬂ
5: (prox (actor (vehicle (name (robot-1)))) RS
U

g 152 P

B WA ELARN

§ USRS RS

PR

e

(location aircraft)
(with nozzle=3))))

Event not predicted
Possible explanation assuming
(move-plan (planner (vehicle (name (robot-=1))))
(from (prox (location filling~station-2)))
(to (prox (location aircraft)))
(with nozzle=3))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective

(grasp (object nozzle-3)
(location filling-station=2))))

Event not predicted
Possible explanation assuming
(grasp-plan (planner (vehicle (name (robot-1))))
(object nozzle-3)
(location filling-station=-2))
Event not predicted
Possible explanation assuming
(goal (planner (vehicle (name (robot-1))))
(objective
(prox (actor (vehicle (name (robot-1))))
(location filling-station-2)
(with nil))))
Event not predicted
Possible explanation assuming
(move~plan (planner (vehicle (name (robot-1))))
(from (prox (location current-location)))

(to (prox (location filling-station-2)))
(with nil))

Event predicted from
(action (actor (vehicle (name (robot-1))))
(refuel aircraft)

(with nozzle-3))

Adding inference chain to data base

153

Sorting Plans by value

Refining the Plans
Refining

(move~plan (planner (vehicle (name (robot=1))))
(from (prox (location current-location)))
(to (prox (location filling=-station-2)))
(with nil))

Refining
(grasp-plan (planner (vehicle (name (robot-1))))
(object nozzle=-3)
(location filling-station=~2))
Refining
(move-plan (planner (vehicle (name (robot=-1))))
(from (prox (location filling~station-2)))
(to (prox (location aircraft)))
(with nozzle-3))
Refining
(refuel~plan (planner (vehicle (name (robot-1))))
(object aircraft)
(with nozzle=-3))

Refining

(move-plan (planner (vehicle (name (robot=1))))
(from (prox (location current-location))) R
(to (prox (location work-bench))) N
(with nil)) U
&4
Refining ']1
(grasp-plan (planner (vehicle (name (robot=1)))) _f;
(object engine-tools) _{u
(location work-bench)) L-‘
OO
Refining ixﬁ
(move~plan (planner (vehicle (name (robot-1)))) .Gi;
(from (prox (location work-bench))) R
(to (prox (location aircraft))) r

(with engine-tools))

Refining

vas:
A" ;"‘\
.-:'.‘:"
- ‘t;
: R3S
. (repair-engine-plan (planner (vehicle (name (robot-1)))) 2&3
e (object engine) Sea)
(location afrcraft) ﬁiﬁ
(with engine-tools)) [
A
! ™ '.-l
b Refining :::::::_:
Y (move~plan (planner (vehicle (mame (robot-1)))) ;EE
i (from (prox (location current-location))) B
(to (prox (location work-~bench))) E

(with nil))
5 Refining

(inventory-plan (planner (vehicle (name (robot-1))))
(location work-bench))

Refining
(move-plan (planner (vehicle (name (robot-1)))) R
: (from (prox (location current-location))) ot
(to (prox (location sensors))) ;vﬁ
(with nil)) e
Refining -§i€
‘. (inventory~-plan (planner (vehicle (name (robot-1)))) A
= (location sensors)) Ewﬂ
Refining E
(move-plan (planner (vehicle (name (robot-1)))) %i;
(from (prox (location sensors))) X
‘ (to (prox (location supply-room))) tf“
- (with (knowledge (inventory sensor-supplies))) =
- (also (knowledge (inventory work-bench-supplies)))) .
Refining
(get-supply-plan (planner (vehicle (name (robot=-1)))) Efr
(location supply~room) .
(supplies sensor~supplies)
(inventory sensors))
Refining i:

(get-supply-plan (planmner (vehicle (name (robot=1))))
(location supply-room) R0
(supplies work-bench=-supplies) o

(inventory work=-bench)) :Q:

a

RS Refining T

: (move-plan (planner (vehicle (name (robot-1)))) ;E
y 155 fh

2T INEY . -

ey . -
s N

s

P

Ry S

4""",
r,'; «
f

(from (prox (location supply-room)))
(to (prox (location work-bench)))
(with work-bench~supplies))

Refining

(replenish-work=~bench~plan
(planner (vehicle (name (robot-1))))
(maintain work-bench)
(with work-bench=-supplies))

Refining

(move-plan (planner (vehicle (mame (robot-1))))
(to (prox (location sensors)))
(with sensor-supplies)
(from (prox (location work-bench))))

Refining

(sensor-repair-plan (planner (vehicle (name (robot=1l))))
(naintain sensors)
(with sensor-supplies))

Refining

(move-plan (planner (vehicle (name (robot-=1))))
(from (prox (location curreant-location)))
(to (prox (location bdbase)))
(with nil))

The database now contains:

(((executive (tell (route-planner))
(start current-location)
(goal filling-station=-2)) (a00125)
m00131)
((executive (tell (scheduler))
(move route)) (a00125)
nil)
((executive (tell (semnsor))
(locate nozzle-3)) (a00125)
m00133)
((executive (tell (arm))
(open hand)) (a00125)
m001 34)
((executive (tell (arm))
(move nozzle-3)) (a00125)
m00135)
((executive (tell (arm))
(close hand)) (a00125)
m00136)

((executive (tell (arm))

-~
2

Ll R

(A

v
" s 7

Lok J
5 S

D
.

[y

L o o g
¢

&)‘v

."ﬂ"'

-
»

v
4 8

l"

re v
A
L)

g
P

« "y
(™ -.' |" "‘J".‘.' ;r‘l‘

St T
L Y

I
S
AR A

.

............................. e

(retract arm)) (a00125)
nil)
((executive (tell (route-planner))
(start filling-station-~2)
(goal aircraft)) (a00125)
m00138)
((executive (tell (scheduler))
(move route)) (a00125)
nil)
((executive (tell (semsor))
(locate afrcraft)) (a00125)
m00140)
((executive (tell (sensor))
(locate filler-cap)) (a00125)
m00141)
((executive (tell (arm))
(open hand)) (a00125)
m00142)
((executive (tell (arm))
(move filler-cap)) (a00125)
m00143)
((executive (tell (arm))
(close hand)) (a00125)
m00144)
((executive (tell (arm))
(rotate arm)) (a00125)

m00145)
‘. ((executive (tell (arm))
- (retract arm)) (a00125)
m00146)

((executive (tell (arm))
(insert nozzle-3)) (a00125)
nil)
((executive (tell (route-plannmer))
(start current-location)
(goal work-bench)) (a00010)
m00148)
((executive (tell (scheduler))
(move route)) (a00010)
nil)
({executive (tell (sensor))
(locate engine-tools)) (a00010)
m00150)
((executive (tell (arm))
(open hand)) (a00010)
m00151)
((executive (tell (arm))
(move engine-tools)) (a00010)
m00152)
((executive (tell (arm))
(close hand)) (a00010)
m00153)
((executive (tell (arm))
(retract arm)) (a00010)
nil)

4 a

»

O

O

<

: MMRENENINE NN
. 'A)."|‘o."'.

-.‘
u-‘-
o
">
-
&
o
13
o
*
_a
-..
K
.

((executive

((executive

((executive

((executive

((executive

((executive

((executive
((executive
(a00015)

m00162)
((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

(tell (route~planner))
(start work-bench)
(goal aircraft)) (a00010)
m00155)
(tell (scheduler))
(move route)) (a00010)
nil)
(tell (seansor))
(locate engine)) (a00010)
m00157)
(tell (arm))
(open engine)) (a00010)
m00158)
(tell (arm))
(repair engine)) (a00010)
nil)
(tell (route-planner))
(start current-location)
(goal work=-bench)) (a00015)
m00160)
(tell (scheduler))
(move route)) (a00015)
nil)
(tell (blackboard))
(recall (inventory (location work-bench))))

(tell (scheduler))
(do (inventory (location work-bench)))) (309015)
nil
(tell (route-planner))
(start current-location)
(goal sensors)) (a00022)
m00164)
(tell (scheduler))
({move route)) (a00022)
nil)
(tell (blackboard))
(recall (inventory (location sensors)))) (a00022)
m00166)
(tell (scheduler))
(do (inventory (location sensors)))) (a00022)
nil)
(tell (route-planner))
(start sensors)
(goal supply-room)) (a00015 a00022)
mn00168)
(tell (scheduler))
(move route)) (a00015 a00022)
nil)
(tell (sensor))
(locate sensor-supplies)) (a00022)
m00170)
(tell (blackboard))
(recall (inventory (location sensors)))) (a00022)

158

[

. gy, o e
RIS
P e
P BTN Y
et
L) . L TR 1

D o}
'

v
k]

LT s

((executive

((executive
((executive
(a00015)

m00174)
((executive

((executive

((executive

{(executive

(a00015)
m00178)
((executive

((executive

((executive

((executive

((executive

((executive

((executive

((executive

m00171)

(tell (scheduler))
(load cart)
(with sensor-supplies)) (a00022)
ail)
(tell (sensor))
(locate work-bench-supplies)) (a00015)
m00173)
(tell (blackboard))
(recall (inventory (location work-bench))))

(tell (scheduler))
(load cart)
(with work-bench-supplies)) (303015)
nil

(tell (route-planner))
(start supply-room)
(goal work=-bench)) (a00015)

m00176)
(tell (scheduler))
(move route)) (a00015)

nil)

(tell (blackboard))
(recall (inventory (location work-bench))))

(tell (scheduler))
(get work-bench-supplies)
(from cart)) (a00015)
m00179)
(tell (scheduler))
(put work-bench=-supplies)
(on work-bench)) (a00015)
nil)
(tell (route-plamnner))
(start work-bench)
(goal sensors)) (a00022)
m00181)
(tell (scheduler))
(move route)) (a00022)
nil)
(tell (blackboard))

(recall (inventory (location sensors)))) (a00022)
m00183)

(tell (scheduler))
(get sensor-supplies)
(from cart)) (a00022)
m00184)
(tell (scheduler))
(repair sensors)
(with sensor-supplies)) (a00022)
nil)
(tell (route-planner))
(start current-location)

159

L > P - [by Ry - e - e - - - w
5 2
0 S
. < a

SR

< Nees,
p (goal base)) (a00029) 3l
S m00186) iy
DI ((executive (tell (scheduler)) AL
2 (move route)) (a00029) S
: nil)) .
N .
2 W
y heS
Oy
Q Move Robot 3\§
R Start Location: filling-station K
g Destination: filling-station-2 -
1 oy
. RO
Y Encoder initializes memory ;i:
- Sonar initializes memory e
X Gyro initializes memory s
*%k%% T{me step: 39 *k%% Enf
" Confirm initialization 'E“
Heading error in initialization tﬁﬂ
Calling Error Handler gt
5 New heading has been computed ,:;
Turn right =90.0 degrees :;
(!ﬁ Reorient Robot -90.0 degrees 2N
Re-initialize memory
Enccdar initializes memory Ziﬁ
Sonar initializes memory N
Gyro initializes memory ¥
=
.'_:.-._1
5 '_':.'.]
: N
:
A

160

*kkk Time step: 40 **k¥
Confirm inftialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k% Time Step: 41 *¥kkk
New coordinates are (7.5 3,0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k%x Time Step: 42 **x*x%k

New coordinates are (8.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

k%%% Time step: 43 hhkx

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k%k Time Step: 44 ***x

New coordinates are (8.5 3.0)

LT W e "Ry Nie AN 150 i tat MR K S MU P i e~ D

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kkkk Time Step: 45 ***¥

New coordinates are (9.0 3.0)

Goal achieved
Remaining resources: 990

Current location: filling-statiom-2
Coordinates: (9.0 3.0)

Sensors have located nozzle-3

Hand opened

Arm moved to nozzle-3

Hand closed

Arm retracted

Move Robot
Start Location: filling-station-2
Destination: aircraft

Encoder initializes memory

Sonar initializes memory

Gyro initializes memory
*k%k% Time step: 46 *k*%k

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

.............

Turn left 90.0 degrees
Reorient Robot 90.0 degrees

Re-initialize memory
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
*kk% Time gstep: 47 *kkk
Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%k% Time Step: 48 **&*
New coordinates are (9.000398163355367 3.499999841465917)
Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k*k*k Time Step: 49 *&** :i?

New coordinates are (9.000796326710733 3.999999682931835)

New route step Eff
¥

e

New heading has been computed ;ﬁl

Continue same heading for new segment ﬁﬁ%

i

N

*%%% Time step: 50 *¥k*k*

Robot moves forward: 0.5 meters o

e w Dl adil- o 7 gt R DRI abedh .

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%% Time Step:

New coordinates are (9.000398163355367 4.499999841465917)

h
"
i
~
2
o~
By
i

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%k Time Step:

New coordinates are (9.000796326710733 4,.,999999682931835)
New route step
New heading has been computed

90.0 degrees
Reorient Robot 90.0 degrees

Turn left

%% Time step:

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step:

New coordinates are (8.50000063413623 5.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

...............

............

&::\
N
:'.{". 3
by
Ny

k%k% Time Step: 55 ##**%

N
i ’ New coordinates are (8.00000126827246 5.001592652916487)
N
N New route step
1
I'-
i New heading has been computed
E Continue same heading for new segment
*kkk Time step: 56 %xk%
! *Robot moves forward: 0.5 meters

.,-f.v.
"l ..-

W o e
C "‘v

Encoder updates memory
Sonar updates memory
Gyro updates memory

1

*k%kk Time Step: 57 #kk*x

New coordinates are (7.50000063413623 5,000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%kk Time Step: 58 *&**x

New coordinates are (7.00000126827246 5.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

k%% Time step: 59 **k*x#*

Robot moves forward: 0.5 meters

)
3
!
Y
N
\
\
i‘
i

-‘.'-

.7/

ik S n

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%¥kk Time Step: 60 *k#*

New coordinates are (6.50000063413623 5.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%kk Time Step: 61 *k¥%

New coordinates are (6.00000126827246 5.001592652916487)

New route step

New heading has been computed

Continue same heading for mew segment

*k** Time step: 62 ***%

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**** Time Step: 63 *kk&

New coordinates are (5.50000063413623 5,000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 64 *x*

166

o o %
«
n

"y
A
'}

2

s,
%W et

R
Y
1" "s

{

New coordinates are (5.00000126827246 5.,001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

*%*k* Time step: 65 kk&#

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%*k Time Step: 66 **x¥*

New coordinates are (4.50000063413623 5.,000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kk Time Step: 67 *%k%k
New coordinates are (4.00000126827246 5.001592652916487)
Goal achieved

Remaining resources: 974

Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located afrcraft

Sensors have located filler-cap

Hand opened

......

)

v 'l| ":':‘-"'" [l
[::l' ..‘ '.:'.'1'4' .

T

-~

ST

)

O

.......

..................

Arm moved to filler-cap

Hand closed

Arm rotated

Arm retracted

nozzle~3 has been inserted

Move Robot

Start Location: aircraft

Destination: work~bench
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

*kk% Time step: 68 **%k#%

Confirm initialization
Heading error in {initialization
Calling Error Handler

New heading has been computed

Turn right -270.0 degrees
Reorient Robot -270,0 degrees

Re-initialize memory
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory
*%kk Time step: 69 *kk*
Confirm initialization
Infitialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%% Time Step: 70 *k&k

New coordinates are (4.000398163355367 4.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**kk Time Step: 71 %¥%*x

New coordinates are (4.000796326710733 4.000000317068165)

New route step

New heading has been computed

Turn left 270.0 degrees
Reorient Robot 270.0 degrees

**kk%* Time stept 72 *%%k%
Robot moves forward: 0.5 meters
Encoder updates memory
Sonar updates memory

Gyro updates memory

**%%* Time Step: 73 *kk*%

New coordinates are (3,50000063413623 4,000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 74 *kkx

169

’
.

o '-';1, R
‘ N ¢ YRR
A . AN

ooal

v
a

WL

e

A Ay

2

Pl
A

S

Vo 5 0 e
| .

;o

.........

A

LA B4 cof MR .". -

-y
€

New coordinates are (3.00000126827246 4.001592652916487)

LAY
NANFENI

New route step

.
.

0 > oy
. 4{“ ‘4"'_:')
T B

. --:\.

New heading has been computed S

N

i Continue same heading for new segment F*’
0%,

***k Time step: 75 *kk% i;i

Robot moves forward: 0.5 meters ux:

. '-. -..
2.t

Y. A
e
.
(

‘¥
<%

C
'L,

Encoder updates memory
Sonar updates memory
Gyro updates memory

j *%*% Time Step: 76 **k* =

- 1
LI 4

-2,

New coordinates are (2.50000063413623 4,000796326458243)

R

i {§~ Robot moves forward: 0.5 meters £
: R
" Encoder updates memory SN
~ Sonar updates memory i
- Gyro updates memory .
! *kkk Time Step: 77 *%%kx ——
(:' " "
;1 New coordinates are (2.00000126827246 4.001592652916487) ;f&
% New route step }Ju
o J ;i_
3 New heading has been computed ‘%f
K Turn right =270.0 degrees f?:
< Reorient Robot ~270.0 degrees =
3 **%% Time step: 78 *a¥x o
»
i Robot moves forward: 0.5 meters i
P Encoder updates memory i

Sonar updates memory T

X -._4
£ 170 ..f1

Gyro updates memory

**** Time Step: 79 *%ik*

New coordinates are (2.000398163355367 3.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%* Time Step: 80 **

New coordinates are (2.,000796326710733 3.0000003170681165)

New route step

New heading has been computed

Continue same heading for new segment

*kkk Time step: 81 **%%
Robot moves forward: 0.5 meters
Encoder updates memory
Sonar updates memory

Gyro updates memory

*k*k Time Step: 82 %%%%k

New coordinates are (2.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory

..
..
.
> .
<
.

Gyro updates memory :i;
:;)
*%%k Time Step: 83 *%** "

New coordinates are (2.000796326710733 2.000000317068165)

171 o

'fb' Goal achieved A=

Current location: work=bench

Remaining resources: 961 r
Coordinates: (2.0 2.0) M

Sensors have located engine-tools

Hand opened

Arm moved to engine-tools

Hand closed

Arm retracted

Move Robot
Start Location: work-bench
"} Destination: alrcraft

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

*%%k% Time step: 84 *k&%k

Confirm initialization

Heading error in initialization
Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

Re-initialize memory

Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

R *kk% Time step: 85 *k#*

Confirm inftfialization

LT . ACIF I . BELARS St e
PR e e et . - B [PJCSEE SR I SR
DT W R A I U N . A

Initialization Confirmed

'Z 5&? Ready For Motioa Simulation
5 Robot moves forward: 0.5 meters
" Encoder updates memory
Sonar updates memory
Gyro updates memory
**%%x Time Step: 86 **¥¥
New coordinates are (2.000398163355367 2.499999841465917)
Robot moves forward: 0.5 meters
> Encoder updates memory
Sonar updates memory
Gyro updates memory
*k*k Time Step: 87 **k*
‘J' New coordinates are (2.000796326710733 2.999999682931835)
New route step
New heading has been computed -
% Continue same heading for new segment ;
2 N
. A
- *xk* Time step: 88 Hkk¥ E?ﬁ
Robot moves forward: 0.5 meters : -
]
. Encoder updates memory Ko
Sonar updates memory A
Gyro updates memory !“1
%%%* Time Step: 89 %k&¥ 5;;}
T
New coordinates are (2.,000398163355367 3,499999841465917) ibﬂ
- r
N
N Robot moves forward: 0.5 meters ff_
X =
173 i

e 'ﬁf Encoder updates memory
. Sonar updates memory
Gyro updates memory
-l *%%% Time Step: 90 *¥**
New coordinates are (2.000796326710733 3,999999682931835)

New route step

New heading has been computed

Robot moves forward: 0.5 meters

» Turn right =90.0 degrees

- Reorient Robot =90.0 degrees
) *%%kx Time step: 91 **x*
e

Encoder updates memory
- Sonar updates memory
: (5. Gyro updates memory

9 *%kkk Time Step: 92 ¥*%*k%x

New coordinates are (2.5 4.0)

i Robot moves forward: 0.5 meters T
‘3 Encoder updates memory }fi
' Sonar updates memory -

Gyro updates memory AN

kk Time Step: 93 hkkx s

- New coordinates are (3.0 4.0) i”7
2 S
= Net. route step i
- i
. Y

New heading has been computed

. "-,
R
s 3!

Continue same heading for new segment jf}

« am- gl -
LA 2 o M T nm T Fu¥ e N o T TN ot 10 e Rl P W

e *%k%* Time step: 94 *¥*#k

Robo£ noves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%k%k% Time Step: 95 **¥x

New coordinates are (3.5 4.0)

Robot moves forward: 0.5 meters

Encoder updates memory

Sonar updates memory 3i¥

Gyro updates memory Py
*kx% Time Step: 96 W*kkk N
Ay
LA
. New coordinates are (4.0 4.0) %}:
Ve
New route step ;?5

New heading has been compiated 3;?

Turn left 90.0 degrees "

Reorient Robot 90.0 degrees .

kk Time step: 97 *kkk :i:i

Robot moves forward: 0.5 meters ffs

Encoder updates memory S

Sonar updates memory el
Gyro updates memory N

*%*k* Time Step: 98 *¥k%

New coordinates are (4.000398163355367 4.499999841465917) ﬁiﬂ

:':\':

- "...'
R Robot moves forward: 0.5 meters 3
R
N
e

» .'.‘

175 HE

Yo % e CIPRR R i S A LV
Pt ettt “" 2" PRI AT S .
PSP V) N R AR AR ~ TR IR

.............................

Encoder updates memory
Sonar updates memory
Gyro updates memory

**%* Time Step: 99 *%%*
New coordinates are (4.000796326710733 4.999999682931835)
Goal achieved

Remaining resources: 948

Current location: aircraft
Coordinates: (4.0 5.0)

Sensors have located engine

Engine housing opened

Engine repaired

Move Robot
Start Location: aircraft
Destination: work-bench

Encoder initializes memory -{}
Sonar initializes memory I
Gyro initializes memory =
k%k%k% Time step: 100 **x**
Confirm initialization
Heading error in initialization fh'
Calling Error Handler

New heading has been computed 5§5

Turn right =~180.0 degrees {“
Reorient Robot -180.0 degrees

Re-initialize memory .

Encoder initializes memory e
Sonar initializes memory r

Gyro initializes memory NENE:

e
%k Time step: 101 **x*x*% e
<

176 r

.
P

3 Confirm initialization J%
. : :" ' *
Initialization Confirmed N AN
Ready For Motion Simulation
R
(]
Robot moves forward: 0.5 meters i, §

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%k%x Time Step: 102 %k&k

New coordimates are (4.000398163355367 4.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

(Y, *kk* Time Step: 103 *ikw R
New coordinates are (4,000796326710733 4.000000317068165)

New route step

New heading has been computed

Turn left 270.0 degrees
Reorient Robot 270.0 degrees

kkk% Time step: 104 *k*k

Robot moves forward: 0.5 meters

Encoder updates memory ;L.\
Sonar updates memory e
Gyro updates memory AN
RARY

*k**x Time Step: 105 k% N

0 - SO
» 4
%

- New coordinates are (3.50000063413623 4.000796326458243)

TaTiTs TR R IR 4

OGOt vt

-

-,

Bal Soff Bl Pl Fulb

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kk Time Step: 106 **%*

New coordinates are (3.00000126827246 4.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

%% Time step: 107 **%**

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
%%% Time Step: 108 *#**x

New coordinates are (2.50000063413623 4,000796326458243)
Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
**%% Time Step: 109 *%kkx

New coordinates are (2,00000126827246 4.001592652916487)

New route step

New heading has been computed

Turn right =-270.0 degrees
Reorient Robot -270.0 degrees

A IR]
.

*kk%k Time step: 110 *%*xx*
Robot moves forward: 0.5 meters
Encoder updates memory

Sonar updates memory
Gyro updates memory

2 *%x% Time Step: 111 *#*x

-

i New coordinates are (2,000398163355367 3.500000158534083)
Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k%k Time Step: 112 *¥k¥*
QQ' New coordinates are (2.000796326710733 3,000000317068165)

< New route step

New heading has been computed

- Continue same heading for new segment

kkkk Time step: 113 **x*%

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

- *kk% Time Step: 114 %%

New coordinates are (2.000398163355367 2,500000158534083)

Robot moves forward: 0.5 meters

b \.-
5{3
: o
S 2o
C Encoder updates memory s
Sonar updates memory N

Gyro updates memory .
X kk%k Time Step: 115 %xx% E?;
. New coordinates are (2.000796326710733 2,000000317068165) Q
Goal achieved fﬁ?
Remaining resources: 935 iki
Current location: work-~bench g
Coordinates: (2.0 2.0) £
\:--\)

(SRS

\:".
Work-bench inventory recalled from Blackboard Cﬂﬁ:

Work-bench inventory accomplished AN

PN

. Move Robot
‘.. Start Location: work-bemch
Destination: sensors

Py SO
LN S
os e

'."..w' Nt

Encoder initialfzes memory e
Sonar initializes memory
Gyro initializes memory

*%%k Time step: 116 *%x%kk
Confirm inittalization e
Heading error inm initialization 55ﬂ
Calling Error Handler ¥

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180,0 degrees

Re-initialize memory

i Encoder initializes memory
< Sonar initializes memory
Gyro initializes memory

kkk% Time step: 117 k%

>
Aet, 0,

oot L,

Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**%* Time Step: 118 *%k¥%%

.........

New coordinates are (2.000398163355367 2.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k%kk Time Step: 119 #¥*k

New coordinates are (2.000796326710733 2.999999682931835)

New route step

New heading has been computed

Turn right -=90.0 degrees
Reorient Robot -90.0 degrees

*%%k Time step: 120 *%**%
Robot moves forward: 0.5 meters
Encoder updates memory
Sonar updates memory

Gyro updates memory

*k%k Time Step: 121 *%x*

New coordinates are (2.5 3.0)

181

5y

st

¥

PR R

r

B

.

‘S

e

&y

v

) SENTRRTARE

DR

S

e

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%% Time Step: 122 *%**%

New coordinates are (3.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

%%% Time step: 123 %%k

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 124 *k%k

New coordinates are (3.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k%% Time Step: 125 **k¥*

New coordinates are (4.0 3,0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

182

TR RS .-

P

X 0
, S

Ty e T Te T, Y "
T
H L MRS)
R AR

el

/{.{ﬁ{%{i{

=,

)

- ”-
i

At BRI

"‘"..“';_":."r—: v,.) ‘. .' - ',' '.‘l'

A R RFAV R

... *%kk* Time Step: 126 *%k%k
New coordinates are (4.5 3.0)
- Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%kkk Time Step: 127 *%k%k%
New coordinates are (5.0 3,0)

Goal achieved
Remaining resources: 925

';5 Current location: sensors
Coordinates: (5.0 2.0)

-) Sensor inventory recalled from Blackboard
:g Sensor inventory accomplished

Move Robot

Start Location: sensors

Destination: supply~room
:ﬁ Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

k%% Time step: 128 *%*k*

Confirm initialization

. Heading error in initialfzation
<. Calling Error Handler

New heading has been computed

Turn left 180.0 degrees
Reorient Robot 180.0 degrees

. AD-A163 956 HUTONOHOUS VEHICLE IIISSION PLRINIIG USING T

aRTIFICIﬁL INTELLIGENCE) TE. . (W) MR FORCE INST OF
H_NRIGHT-PA ON AFB ON SCHOOL O

UNCLASSIFIED S E STDCKBRIDGE DEC 835 RFIT/GE/ENGISSD 45 "F/G 64

....... .

373

A AN, e

p i R IR € T 4 N
- ! A D) b o s Y Y — P

. T

e

RS

Wy Ny Bl RSy -

%0 80 g " T

1.6

EEE
SEEE

“f o a1
dAdagaa443

1.4

—
e ——

|

Z A TG et MG

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

——
=
¥ O — v
g _il =
——
L.
S
: -
¥ v
N
.
v.
[
R eled
- . :
P o
wl {m
r Y .L
. -.L
—l‘,\ - .L
. 98 -M
. v
« .L,
e ;
: ll .l.“.
~ o
l R .th.
o g

Re~initialize memory
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

kk Time step: 129 **¥*x
Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%k% Time Step: 130 **x*x

New coordinates are (4.50000063413623 3,000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*k** Time Step: 131 *&*x
New coordinates are (4.00000126827246 3,001592652916487)
New route step
New heading has been computed

Turn right =270.0 degrees
Reorient Robot -270.0 degrees

*%%% Time step: 132 #%%x%

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory

..

Lte " VR I U R A S YA
. e e e . P '~ .
R R S USRS IR A I L I PR AT T

S e

-

.?—T’v

AP

tw e A
o

C SRR

v
. .r'
LR
" d
L T

e

« 8
PR i
.

rlet.
P
Nt

v
b

R L]
A
& A

e

[}
¢ s
LA I |
A

i
LY

A . M) "'-'. T ‘-.'..' e
R .‘-':v:r] {' 3

A

[T

14

.
v

I3

. . e . C - .
LI STV
PR Sty
MO SIIOST R, DA
¢ DA TN

¢
“s's LA

v (]
SAF A A

s
1
¢
ir

Gyro updates memory

*kkk Time Step: 133 *kk%

New coordinates are (4.000398163355367 2.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k%% Time Step: 134 *k&*x

New coordinates are (4.000796326710733 2.000000317068165)

New route step

New heading has been coamaputed

Continue same heading for new segment

*kk% Time step: 135 ***x#%

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kk Time Step: 136 *x*%

New coordinates are (4.000398163355367 1.500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%k% Time Step: 137 *k¥%k

New coordinates are (4.000796326710733 1.000000317068165)

185

T CTRTEI TS YR CEFA)
]

S te
L
Y
LRI
o

v r
s

4
.
[AL A A

L) -V-“v;'.
[}

4

-

D -

e Ve .
Falallay

) ',s
‘fl I3
%
. :ﬁ}
o Goal achieved oL

Remaining resources: 917
Current location: supply-room
Coordinates: (4.0 1.0)

f'?'?"

.
_ e
3

afe)
CAAA

»
o
5

Sensors have located sensor-supplies

r

L

Sensor inventory recalled from Blackboard

EIRIANE IS
% :
'} P

.
«
%
)

Cart loaded with sensor-supplies

LAY

Sensors have located work-bench-supplies

.y !
i '-. '.._-' o A

"we .o o

Work-bench inventory recalled from Blackboard

Cart loaded with work-bench-supplies

\! Move Robot
Start Location: supply-roonm
Destinacion: work-bench

Encoder initializes memory S
Sonar initializes memory s
Gyro initializes memory

**%%k Time step: 138 *k#* N
-, Confirm initialization X
Heading error in initifalization

Calling Error Handler

New heading has been computed

- Turn left 270.0 degrees ;74
- Reorient Robot 270.0 degrees ,%
Re-initialize memory iﬁi

Encoder initializes memory éﬁq

Sonar i{nitializes memory -

Gyro initializes memory e

. AN
- h.‘

186 £

R R T A T R R R A R R R W N S O O W P U U R W R R W WL PO UL R ALY T Y PR VWS R AR

*k%% Time step: 139 #kx¥

"
"
\J

Confirm initialization

Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

o

Encoder updates memory b}f
Sonar updates memory LN
Gyro updates memory Y
.‘f:':":\

%%% Time Step: 140 #&a% S

.L '.\

New coordinates are (3.5000006341362° 1.000796326458243) :f?

3
[N
YRR
L.
“
[Oadi
)
..
Fay
L)
et d
[EPRL
o

T«
‘. U
4 s

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

A

**4% Time Step: 141 *#a

.. ..
'-.. r" 149 .'. ‘l
. . [.o

) vt

New coordinates are (3.00000126827246 1.001592652916487) Eﬁﬂ
e
New route step 1
o
New heading has been computed KOS
Continue same heading for new segment ifﬁ

*%** Time step: 142 **x%
Robot moves forward: 0.5 meters
Encoder updates memory

Sonar updates memory
Gyro updates memory

k%k Time Step: 143 *kik 'tq

New coordinates are (2.50000063413623 1.000796326458243) ;i&
9

A

187

...............

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%k% Time Step: 144 *k**x

New coordinates are (2.00000126827246 1.001592652916487)
New route step

New heading has been computed

Turn right =90.0 degrees
Reorient Robot =-90.0 degrees

kkk Time step: 145 #&x

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

kk Time Step: 146 **%%k*
New coordinates are (2.000398163355367 1.499999841465917)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*kdk Time Step: 147 *kkx

New coordinates are (2.000796326710733 1.999999682931835)

Goal achieved

Remaining resources: 909
Current location: work-bench

b AN N T M S g RN A

Y e e, Caii e SN a A S S ot RIC i o N~ g g i QAR pi gl

!

[}
LJ

Coordinates: (2.0 2.0)

Work~bench inventory recalled from Blackboard
work-bench-supplies obtained from cart
work-bench-supplies placed on work-bench

Move Robot

Start Location: work~-bench

Destination: sensors
Encoder initializes memory
Sonar initializes memory
Gyro initializes memory

kk Time step: 148 #xx¥

Confirm initialization
Initialization Confirmed
Ready For Motion Simulation

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*kk% Time Step: 149 *kxk

")
New coordinates are (2.000398163355367 2,499999841465917) E::

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

=

.

. .."- L A N

o Je KRR

. PN .

e s e e .
IO N

. s

e

%% Time Step: 150 **#

Y
‘l'.l

L A A
1]
‘s
.‘."".
PPN
L[]

New coordinates are (2,000796326710733 2,999999682931835)

o
- o
="

IRAC {
.)

s e
o
by & '
Loy

bt
P..'
L','

E:-;*:k-;ﬂ'j--k-;si

FPIEF X

'y AR SN

)
W

DA
[

o
.

Rl MOMEACAERINENE . DN

o AW e

.
2
F.

rl
.
A
,
L-
L..

4

New route step

New heading has been computed

Turn right -90.0 degrees
Reorient Robot -90.0 degrees

%%% Time step: 151 *¥%%%

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
*%%k% Time Step: 152 *%k%*
New coordinates are (2.5 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory
*%k%k Time Step: 153 *¥k**
New coordinates are (3.0 3.0)

New route step

New heading has been computed

Continue same heading for new segment

*%%% Time step: 154 #&**
Robot moves forward: 0.5 meters
Encoder updates memory
Sonar updates memory

Gyro updates memory

*%%% Time Step: 155 hka¥

190

v .:‘.l .'..
o "y .
RERARAS

indal

o,
B
P)

< .:.' -.'.'.' .-.-._....7 ._;.- AP IR 25 .'.\ ',;'-!;'\".f- -). -t *\ N "-“-‘-\i‘

wm@m‘ LLELRN .\ XY -s. _-.‘.-:.-.‘ T

LI P S S S AL I A e Il TR i N A S i S B A b el on dia i EAL b pARCne Sonce o SV pian Bia R 4l Sien ha fio 4)

New coordinates are (3.5 3.0)

Robot moves forward: 0.5 meters

(AR R e s |] AU NN
[
v

Encoder updates memory
Sonar updates memory
Gyro updates memory

£Z2 TN

k%k Time Step: 156 *k*¥

4

L
[Wy N

New coordinates are (4.0 3.0)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates .memory

< e e -
Y @ AR

- *kd% Time Step: 157 #****

. u New coordinates are (4.5 3.0)
E; Robot moves forward: 0.5 meters
i Encoder updates memory

- Sonar updates memory

= Gyro updates memory

- *%%% Time Step: 158 #w#

! New coordinates are (5.0 3.0)

Goal achieved

.
e

)

Remaining resources: 900
Current location: sensors
Coordinates: (5.0 3.0)

P . - . ..A
. Lo v ey et
. S e Tag gt LA
o et et L [A AL g
PRETR CT e JUR
y & el et R AN
¢ e e e o s N 0 AL
2 . e, L .

‘a0
(] ot
Lt s

LR SR S }
]
LA D gat L)

Sensor inventory recalled from Blackboard

] DNLSCRLPE B L ARN PN

R W

sensor-supplies obtained from cart

s ey Y v ¥ ..

R A A
AL L'
AR AR

e % e N e e
. . . L
P J.:'.'

8w
2" »,
.

B e

NN}
e .
[

191

» e e el PN

. .0.‘. g "-"’ " ,.4._. PRI T S I e PRI e '.- . LRI
R L, -’: R N TR ST R O R G GRS

§ -
-
-
-
-

L]) \

:
. jﬁé sensors repaired with semsor-supplies ”‘}
;o DX
o Move Robot 3
> Start Location: sensors Wi
2 Destination: base kq
X i
Encoder initializes memory i

Sonar initializes memory
Gyro initializes memory

*%%% Time step: 159 *k*&

Confirm initialization

Heading error in initialization R
Calling Error Handler R

New heading has been computed

. b
B, e

Turn left 180.0 degrees
Reorient Robot 180,0 degrees

Re-initialize memory
.42 Encoder initializes memory

Sonar initializes memory
Gyro initializes memory

%% Time step: 160 **xx
Confirm initialization
Initialization Confirmed 25%
Ready For Motion Simulation o

- Robot moves forward: 0.5 meters E_;

Encoder updates memory
Sonar updates memory
Gyro updates memory "f’

kk Time Step: 161 **k%

l; New coordinates are (4.50000063413623 3.000796326458243) ;li

N Robot moves forward: 0.5 meters]

: oy

’ Sy

. 192 i
[N - ‘_'

“»

PCSRIEN,

SRR) S,

Encoder updates memory
e Sonar updates memory
Gyro updates memory

%% Time Step: 162 *¥kk
New coordinates are (4.00000126827246 3.001592652916487)
New route step

New heading has been computed

Continue same heading for new segment

**** Time step: 163 #¥ks S

Robot moves forward: 0.5 meters ELJ

Encoder updates memory
Sonar updates memory
Gyro updates memory

Qe *%** Time Step: 164 *%kx L

New coordinates are (3.50000063413623 3.000796326458243)

.)
2
Robot moves forward: 0.5 meters F%ﬂ
\‘ N

Encoder updates memory
Sonar updates memory W
Gyro updates memory %’é

*k** Time Step: 165 *¥*%

New coordinates are (3,00000126827246 3.001592652916487) u:ﬁ
—
New route step KR
New heading has been computed fiﬁ
o
Continue same heading for new segment NS

............

C'.-V.W fo Pl Nl p i, i Auibbail Sul Wit ind Al Gl A A Tttt il a2l AR S AR NSl N g aral i oA gl SORR i AR e aAR LU AR e e o ik o RE el e B Lt o T
N v
E }i
! s
A **k% Time step: 166 #¥¥+ -l
Robot moves forward: 0.5 meters Eﬁf
NG
b
Encoder updates memory S
Sonar updates memory e
Gyro updates memory RS
NN
kk Time Step: 167 k¥ S
Th.i' . 1
O
New coordinates are (2.50000063413623 3.,000796326458243) L
Robot moves forward: 0.5 meters Jf!
=
T
Encoder updates memory e
Sonar updates memory e
Gyro updates memory :ga
ey
%k% Time Step: 168 *kk&]
New coordinates are (2.00000126827246 3,001592652916487)
New route step
New heading has been computed
Continue same heading for new segment
#%%% Time step: 169 **x% o
Robot moves forward: 0.5 meters ;:j
Encoder updates memory oy
Sonar updates memory 5
Gyro updates memory 2
*%%k% Time Step: 170 *k** Pf;
5 ~
% New coordinates are (1.50000063413623 3.000796326458243)]
a7 o
)
Robot moves forward: 0.5 meters £
A
e
Encoder updates memory 553
o
194
. fﬁﬂ
IR R S T R Ay

............
..

AL R R N

‘l" T “,", L

.........

Sonar updates memory
Gyro updates memory

*k%** Time Step: 171 *%kkk

New coordinates are (1.00000126827246 3.001592652916487)

New route step

New heading has been computed

Continue same heading for new segment

**%* Time step: 172 *%x*x

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%% Time Step: 173 *k¥k*

New coordinates are (0.5000006341362302 3.000796326458243)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

**kk* Time Step: 174 *k&%

New coordinates are (1.268272460400177E-06 3.001592652916487)

New route step

New heading has been computed

Turn right =270.0 degrees
Reorient Robot =-270,0 degrees

*%** Time step: 175 *k**x

y .
R
" A
n.-

&
Pq

..
%]

»
¢

e e

»
G
U
»

4

T BT

4

5 a4

.",rf“.' PER

..................

» LWL TR T W e e

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

k% Time Step: 176 **x*k

New coordinates are (0.0003981633553666474 2,500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%% Time Step: 177 **¥%k

New coordinates are (0.,0007963267107332947 2,000000317068165)

New route step

New heading has been computed

Continue same heading for new segment

**%% Time step: 178 *%kx*

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

*%%k% Time Step: 179 *%x*x*

New coordinates are (0.0003981633553666474 1,500000158534083)

Robot moves forward: 0.5 meters

Encoder updates memory
Sonar updates memory
Gyro updates memory

%kk Time Step: 180 *x¥x et
New coordinates are (0.0007963267107332947 1.000000317068165)

New route step

v vy
g R D N R W N

New heading has been computed

Continue same heading for new segment el
i

*kkk Time step: 181 **¥* AN,
Robot moves forward: 0.5 meters %ﬁi
S
Encoder updates memory ki?f
Sonar updates memory #rs
Gyro updates memory F::
qu
*kx% Time Step: 182 #ik#n Feiy
0
r,;:‘q‘
New coordinates are (0.0003981633553666474 0.5000001585340827) gatal
Robot moves forward: 0.5 meters j-ﬁ
Encoder updates memory Efé
Sonar updates memory hegee
Gyro updates memory :?ﬁ
*%%k Time Step: 183 *h#+ RS

New coordinates are (0.0007963267107332947 3.170681653480445E-07) lf;

Goal achieved

Remaining resources: 882 L
Current location: base !sy
Coordinates: (0.0 0,0) -

t S
-> (exit) N
58

B

e\

A

197 t

L o '
.....................

8.

9.

10.

11.

Bibliography

Deitel, Harvey M. An Introduction to Operating Systems.
Reading, MA: Addison-Wesley, 1984.

Charniak, Eugene et al. Artificial Intelligence
Programming. Hillsdale, NJ: Lawrence Erlbaum Associates,
1980.

Clifford, Thomas and Hubert Schneider. (Creating a Mobile
Autonomous Robot Research System (MARRS). MS thesis
GE/ENG/84D-19. School of Engineering, Air Force Institute

of Technology (AU), Wright~Patterson AFB OH, December 1984.

Cohen, Paul R. et al (eds.) "Planning and Problem
Solving,” Handbook of Artificial Intelligence,

3: 515-522 (1983).

Crowley, James L. "Navigation for an Intelligent Mobile
Robot,” IEEE Journal of Robotics and Automation,
RA-1 (1): 31-41 (March 1985).

Giralt, Georges et al. "A Multi-Level Planning and
Navigation System for a Mobile Robot; A First Approach
to Hilare,” Proceedings IJAI-79, 1: 335-337

(1979).

Hayes-Roth, Barbara. "A Blackboard Architecture for
Countrol,” Artificial Intelligence: An International
Journal, 26 (3): 251-321 (July 1985).

Hayes-Roth, Frederick et al., "Modeling Planning as an

Incremental, Opportunistic Process,” Proceedings IJAI-79,
2: 375-383 (1979).

Keirsey, D. et al, “"Autonomous Vehicle Control Using AI

Techniques,” IEEE Transactions on Software Engineering,
SE-11 (9): 986-992 (September 1985).

Monaghan, Glen. Navigation for an Autonomous Mobile
Robot. MS thesis GE/ENG/84D-47. School of Engineering,
Air Force Institute of Technology (AU), Wright-Patterson
AFB OH, December 1984,

Nitzan, David. "Development of Intelligent Robots:
Achievements and Issues,” IEEE Journal of Robotics and
Automation, RA-1 (1): 3-13 (March 1985).

LG LUTA L SR DS o DK vl 1 v o

12.

13.

14,

15.

16.

Owen, Robert. Environmental Mapping by a HERO-1 Robot
Using Sonar and a Laser Barcode Scanner. MS thesis
GE/EE/83D-52, School of Engineering, Air Force Institute

of Technology (AU), Wright-Patterson AFB OH, December 1983.

Rich, Elaine. Artificial Intelligence. New York, NY:
McGraw-Hi1l, 1984,

Schank, Roger C. and Christopher K. Riesbeck. Inside
Computer Understanding: Five Programs Plus Miniatures.
Hillsdale, NJ: Lawrence Erlbaum Associates, 1981.

Wilensky, Robert. Planning and Understanding.
Reading, MA: Addison-Wesley, 1983.

----- . "Meta-Planning: Representing and Using
Knowledge About Planning in Problem Solving and Natural
Language Understanding,” Cognitive Science, 5:

197-233 (1981).

7.

P.-

.
<

e m -y -
TRABAY
T
T4

-“ -‘,
A5

» 'l J‘ l
s

R4
.

“.'
[N

l

N
...

I
LY

e
«

.

ARSI
WL“I' o,

s
Y 5
v, /.". "4’4"

.
-

)
"
Ay
“

LIRS |
L.
A
<
n..n
A

]
h g

Lam an o an o o

LIBE L AErons o i aun b ndlL 4 o

T

SN I S T o

VITA

Captain Samuel E. Stockbridge was born on 19 February 1958
in Laredo, Texas., He graduated from high school in Laredo, Texas
in 1976 and attended the University of Texas at Austin from which
he received the degree of Bachelor of Science in Electrical
Engineering in August of 1980. Upon graduation, he received a
commission in the USAF through Officer Training School. 1In March
of 1981, he was assigned to the Air Force Weapons Laboratory,
Kirtland AFB, New Mexico, where he worked as a Laser
Vulnerability Engineer unt{l entering the School of Engineering,

Air Force Institute of Technology, inm June 1984,

permanent address: 1019 Cortez St.
Laredo, Texas 78040

~
.

? ¥ T v W
LR N S
"2l
L

.l.' A
e

." .

. .

N L LA

‘.
N

Ve

13 L]
U

>
’

- g
:
Ch
_.]

)
o 5y % %
e,

s
v
h]
'8

e e
» ,:l'

s

Y

TE

hY
YUY

S W

S P T U R S - 7 . - TR TR TR TR Y Masd .
. (R R S N R R N S T T L N T T T Y T T T T T TR T TN TEIWITRTE YTV
PG

o
JNCoaSSTRIED 'y —
SECURITY CLASSIFICATIO H - - ‘
N OF THIS PAGE -~ /é} é S [)'_
REPORT DOCUMENTATION PAGE

-'::-‘neran SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

-~ Jnclassified

2s. SECURITY CLASSIFICATION AUTHORITY ' 3. DISTRIBUTION/AVAILABILITY OF REPORAT

approved for public release;
aistribution unliimited

20..DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMSBER(S)

aFLL/3L/ENS/35u-i45

6s. NAME OF PERFORMING ORGANIZATION b, OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
A . . (If applicpble)

scnool of Engineering AfIT/ENG

6¢c. ADDRESS (City, State and ZIP Code) =~ 7b. ADORESS (City, State and ZIP Code)
alr Force Institute of Tlechnology
wrignt-fatterson afB8, Jd 45433

8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicabie)
. . ol
£ AMSL S06a
8c. ADDRESS (City, State and ZIP Code)] 10. SOURCE OF FUNDING NOS.
aeérospace wedical xesearcna .abs PROGRAM PROJECT TASK WORK UNIT
srignt-fatterson afb, JH 43433 ELEMENT NO. NO. No. NO-

1. TITLE (Include Secyrity Classification)
s>ee 30X 1y

12. PERSONAL AUTHOR(S)
szmuel =, ostockbridze, EB3EE, Capt, U3al

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 16. PAGE COUNT
us_adesis FAOM To 1753 vecember 24 e
16. SUPPLEMENTARY NOTATION -"-._ -
EIAOS
e
17. COSATI CODES 18. SUBJECT TEAMS /Continue on reverse if necesssry and identify by block number) >
EIELD GROUP SuUB. GR. artificial inteliizence Planning ;7f
Jv 22 csomputerized simulilation e
J2 Jdnb

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Yitle: adloldmuds VZAICLE wIsSIud PuadNing
JSING al TocANIQUES

ihesis Chairman: Jr. .. aabriscky SR
Professor of Electrica. rngineering S

od b polc emer AW Ara 10y,
% WOLAVER 76 vAv (6

Dean for Research and Professional Development
Als Fesce institute ¢! Tethaciogy [)
Wright-Patterson AFB OM a3

- DISTRIBUTION/AVAILABILITY OF ABSTRACT 21, ABSTRACT SECURITY CLASSIFICATION
uncLassirieo/unumTeD B same as aer. (J oric users O Jnclassified
22s. NAME OF RESPONSIBLE INOIVIDUAL 22b. TELEPHONE NUMBER 22c. OFFICE SYMBOL

tinclude Area Code)

513-255=527% afLD/ed3

OD FORM 1473, 83 APR EDITION OF 1 JAN 73 IS OBSOLETE. MY s [DTE L)
SECURITY CLASSIFICATION OF THIS PAGE

JL. m. rabrisgy

e uTe e L T S UL P PO R R TR LRI
- v » . - » L - - - - . . . - - . - . ~ -
N At I I R RO A e e e e e e e e
™ A -._l .A ‘l ‘,. -y A _’. o'y " .- e " * * * ¥

D BN B e TR S e JE R LTS ATAC PRI
PIPF PR VAT A TR SR T DA VAP VAT AR TV R A, S A PV AL ST SRR L S SR S

"

JucuassIFfird

| 1A A

SECURITY CLASSIFICATION OF THIS PAGE

A

R
]

N
")
o
"
\
~
<
}_..
X

iieey

"~ This stnifsinvestigates a software architecture for autono-
mous vehicle control. The autonomous vehicle”s planning ability
is divided into operating system functions and mission planning
system functionms. The blackboard control architecture 1is adopted
for the operating system design with implementation using the
ROSS programming language.

The planning system incorporates elements of a planner and
understander by declaratively encoding meta-knowledge, or
knowledge about the planning process. By separating the
knowledge about how to plan from the specific domain knowledge,
an understander can use this knowledge about how plans are con-
structed, in combination with the specific domain knowledge, in
the understanding process. Likewise, a planner can use this same
knowledge in the planning process. Thus, a great deal of flexi-
bility is attained by dividing the knowledge base into meta-rules
and domain specific rules.

The planning system constructs an agenda of scripts which
directs the control flow in the operating system., The operating
system is given the additional duties of goal detector and plan
projector and detects any errors in the plan,

The implementation demonstrates the benefits of using meta-
planning concepts combined with a blackboard control architecture
to provide an autonomous vehicle with a more flexible and power-
ful planning capability.

P

\
\

G

—
Lle s

etelal

U "':‘ o 4 o
PAEACNUON g (o
ot

~s
[.‘.
‘.- .l A,
"! » 'l
A tmia"as

L

Aot

o

N

w
>3

A
[WP i |

A
AT I3

.

